| Package | Version | Citation |
|---|---|---|
| base | 4.4.1 | R Core Team (2024) |
| causaldata | 0.1.3 | Huntington-Klein and Barrett (2021) |
| cobalt | 4.5.5 | Greifer (2024a) |
| data.table | 1.15.4 | Barrett et al. (2024) |
| gbm | 2.2.2 | Ridgeway and Developers (2024) |
| kableExtra | 1.4.0 | Zhu (2024) |
| knitr | 1.48.1 | Xie (2014); Xie (2015); Xie (2024) |
| marginaleffects | 0.21.0 | Arel-Bundock, Greifer, and Heiss (Forthcoming) |
| MatchIt | 4.5.5 | Ho et al. (2011) |
| MatchItSE | 1.0 | Henke (2016) |
| patchwork | 1.2.0 | Pedersen (2024) |
| randomForest | 4.7.1.1 | Liaw and Wiener (2002) |
| renv | 1.0.7 | Ushey and Wickham (2024) |
| rmarkdown | 2.27 | Xie, Allaire, and Grolemund (2018); Xie, Dervieux, and Riederer (2020); Allaire et al. (2024) |
| tidyverse | 2.0.0 | Wickham et al. (2019) |
| WeightIt | 1.2.0 | Greifer (2024b) |
References
Abadie, Alberto, and Guido W. Imbens. 2006. “Large sample properties of matching estimators for
average treatment effects.” Econometrica 74 (1):
235–67. https://doi.org/10.1111/j.1468-0262.2006.00655.x.
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier
Luraschi, Kevin Ushey, Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/rmarkdown.
Arel-Bundock, Vincent, Noah Greifer, and Andrew Heiss. Forthcoming.
“How to Interpret Statistical Models Using marginaleffects in R and
Python.” Journal of Statistical Software,
Forthcoming.
Austin, Peter. 2011. “An introduction to
propensity score methods for reducing the effects of confounding in
observational studies.” Multivariate Behavioral
Research 46 (3): 399–424. https://doi.org/10.1080/00273171.2011.568786.
Austin, Peter C. 2008. “A critical appraisal
of propensity-score matching in the medical literature between 1996 and
2003.” Statistics in Medicine 27 (April):
2037–49. https://doi.org/10.1002/sim.3150.
Bader-El-Den, Mohammed, Eleman Teitei, and Todd Perry. 2019.
“Biased Random Forest for Dealing with the
Class Imbalance Problem.” IEEE Transactions on Neural
Networks and Learning Systems 30 (7): 2163–72. https://doi.org/10.1109/TNNLS.2018.2878400.
Barrett, Tyson, Matt Dowle, Arun Srinivasan, Jan Gorecki, Michael
Chirico, and Toby Hocking. 2024. data.table: Extension of “data.frame”. https://CRAN.R-project.org/package=data.table.
Breiman, Leo. 1996. “Bagging
predictors.” Machine Learning 24: 123–40. https://doi.org/10.3390/risks8030083.
———. 2001. “Random Forests.” Machine
Learning 45: 5–32. https://doi.org/https://doi.org/10.1023/A:1010933404324.
Breiman, Leo, Jerome H Friedman, Richard A Olshen, and Charles Stone.
1984. Classification and Regression
Trees. Chapman; Hall/CRC. https://doi.org/10.1201/9781315139470.
Brookhart, M. Alan, Sebastian Schneeweiss, Kenneth J. Rothman, Robert J.
Glynn, Jerry Avorn, and Til Stürmer. 2006. “Variable selection for propensity score
models.” American Journal of Epidemiology 163
(12): 1149–56. https://doi.org/10.1093/aje/kwj149.
Cannas, Massimo, and Bruno Arpino. 2019. “A
comparison of machine learning algorithms and covariate balance measures
for propensity score matching and weighting.”
Biometrical Journal 61 (4): 1049–72. https://doi.org/10.1002/bimj.201800132.
Cunningham, Scott. 2021. “Matching and
Subclassification.” In Causal Inference: The
Mixtape, 175–240. Yale University Press. https://doi.org/10.2307/j.ctv1c29t27.8.
Dehejia, Rajeev H., and Sadek Wahba. 1999. “Causal Effects in Nonexperimental Studies: Reevaluating
the Evaluation of Training Programs.” Journal of the
American Statistical Association 94 (448): 1053–62. https://doi.org/10.1080/01621459.1999.10473858.
Ferri-García, Ramón, and María Del Mar Rueda. 2020. “Propensity score adjustment using machine learning
classification algorithms to control selection bias in online
surveys.” PLoS ONE 15 (4): 1–19. https://doi.org/10.1371/journal.pone.0231500.
Friedman, Jerome H. 2001. “Greedy Function Approximation: A
Gradient Boosting Machine.” The Annals of
Statistics 29 (5): 1189–1232. https://www.jstor.org/stable/2699986.
Goller, Daniel, Michael Lechner, Andreas Moczall, and Joachim Wolff.
2020. “Does the estimation of the propensity
score by machine learning improve matching estimation? The case of
Germany’s programmes for long term unemployed.” Labour
Economics 65 (March). https://doi.org/10.1016/j.labeco.2020.101855.
Greifer, Noah. 2024a. cobalt: Covariate
Balance Tables and Plots. https://CRAN.R-project.org/package=cobalt.
———. 2024b. WeightIt: Weighting for Covariate Balance
in Observational Studies. https://CRAN.R-project.org/package=WeightIt.
Heinrich, Carolyn, Alessandro Maffioli, and Gonzalo Vázquez. 2010.
“A Primer for Applying Propensity-Score
Matching.” August. http://dx.doi.org/10.18235/0008567.
Henke, Thorsten. 2016. “MatchItSE.”
Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2011.
“MatchIt: Nonparametric Preprocessing for Parametric
Causal Inference.” Journal of Statistical Software 42
(8): 1–28. https://doi.org/10.18637/jss.v042.i08.
Huntington-Klein, Nick, and Malcolm Barrett. 2021. causaldata: Example Data Sets for Causal Inference
Textbooks. https://CRAN.R-project.org/package=causaldata.
Jena, Pradyot Ranjan, Bezawit Beyene Chichaibelu, Till Stellmacher, and
Ulrike Grote. 2012. “The impact of coffee
certification on small-scale producers’ livelihoods: A case study from
the Jimma Zone, Ethiopia.” Agricultural Economics
(United Kingdom) 43 (4): 429–40. https://doi.org/10.1111/j.1574-0862.2012.00594.x.
King, Gary, and Richard Nielsen. 2019. “Why
Propensity Scores Should Not Be Used for Matching.”
Political Analysis 27 (4): 435–54. https://doi.org/10.1017/pan.2019.11.
LaLonde, Robert J. 1986. “Evaluating the
Econometric Evaluations of Training Programs with Experimental Data
Author.” The American Economic Review 76 (4):
604–20. http://arks.princeton.edu/ark:/88435/dsp010p096689n.
Lampach, Nicolas, and Ulrich B. Morawetz. 2016. “Credibility of propensity score matching estimates. An
example from Fair Trade certification of coffee
producers.” Applied Economics 48 (44): 4227–37.
https://doi.org/10.1080/00036846.2016.1153795.
Lee, Brian K., Justin Lessler, and Elizabeth A. Stuart. 2010.
“Improving propensity score weighting using
machine learning.” Statistics in Medicine 29:
337–46. https://doi.org/10.1002/sim.3782.
Liaw, Andy, and Matthew Wiener. 2002. “Classification and
Regression by randomForest.” R News 2 (3): 18–22. https://CRAN.R-project.org/doc/Rnews/.
McCaffrey, Daniel F., Greg Ridgeway, and Andrew R. Morral. 2004.
“Propensity score estimation with boosted
regression for evaluating causal effects in observational
studies.” Psychological Methods 9 (4): 403–25. https://doi.org/10.1037/1082-989X.9.4.403.
Naimi, Ashley I., Stephen R. Cole, and Edward H. Kennedy. 2017.
“An introduction to g methods.”
International Journal of Epidemiology 46 (2): 756–62. https://doi.org/10.1093/ije/dyw323.
Olson, Matthew A., and Abraham J. Wyner. 2018. “Making Sense of Random Forest Probabilities: a Kernel
Perspective,” 1–35. http://arxiv.org/abs/1812.05792.
Pedersen, Thomas Lin. 2024. patchwork:
The Composer of Plots. https://CRAN.R-project.org/package=patchwork.
R Core Team. 2024. R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing. https://www.R-project.org/.
Ridgeway, Greg, and GBM Developers. 2024. gbm: Generalized Boosted Regression Models.
https://CRAN.R-project.org/package=gbm.
Ridgeway, Greg, Dan Mccaffrey, Andrew Morral, Matthew Cefalu, Lane
Burgette, and Beth Ann Griffin. 2024. “Toolkit for Weighting and Analysis of Nonequivalent
Groups: A Tutorial for the R TWANG Package.” https://doi.org/10.7249/tl136.1.
Rosenbaum, Paul R., and Donald B. Rubin. 1983. “The central role of the propensity score in observational
studies for causal effects.” Biometrika 70 (1):
41–55. https://doi.org/10.1017/CBO9780511810725.016.
Rubin, Donald B. 1974. “Estimating Causal
Effects of Treatments in Experimental and Observational
Studies.” Journal of Educational Psychology 66
(5): 688–701. https://doi.org/10.1002/j.2333-8504.1972.tb00631.x.
Schuster, Tibor, Wilfrid Kouokam Lowe, and Robert W. Platt. 2016.
“Propensity score model overfitting led to
inflated variance of estimated odds ratios.” Journal
of Clinical Epidemiology 80: 97–106. https://doi.org/10.1016/j.jclinepi.2016.05.017.
Setoguchi, Soko, Sebastian Schneeweiss, Alan M. Brookhart, Robert J.
Glynn, and Francis E. Cook. 2008. “Evaluating
uses of data mining techniques in propensity score estimation: a
simulation study.” Pharmacoepidemiology and Drug
Safety 17 (March): 546–55. https://doi.org/10.1002/pds.
Smith, Jeffrey A., and Petra E. Todd. 2005. Does matching overcome LaLonde’s critique of
nonexperimental estimators? Vol. 125. 1-2 SPEC. ISS. https://doi.org/10.1016/j.jeconom.2004.04.011.
Splawa-Neyman, Jerzy. 1923. “On the
application of probability theory to agricultural experiments. Essay on
principles. Section 9.” PhD thesis. https://doi.org/10.1214/ss/1177012031.
Tibshirani, Robert. 1996. “Regression
Shrinkage and Selection via the Lasso.” Journal of the
Royal Statistical Society 58 (1): 267–88. https://www.jstor.org/stable/2346178.
Tu, Chunhao. 2019. “Comparison of various
machine learning algorithms for estimating generalized propensity
score.” Journal of Statistical Computation and
Simulation 89 (4): 708–19. https://doi.org/10.1080/00949655.2019.1571059.
Ushey, Kevin, and Hadley Wickham. 2024. renv: Project Environments. https://CRAN.R-project.org/package=renv.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the tidyverse.”
Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Xie, Yihui. 2014. “knitr: A
Comprehensive Tool for Reproducible Research in R.”
In Implementing Reproducible Computational Research, edited by
Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman;
Hall/CRC.
———. 2015. Dynamic Documents with R and Knitr. 2nd
ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2024. knitr: A General-Purpose
Package for Dynamic Report Generation in r. https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown:
The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R
Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.
Zhu, Hao. 2024. kableExtra: Construct
Complex Table with “kable” and
Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.
R Version Control
Please note that future updates to these packages may impact replication of results.