References

Abadie, Alberto, and Guido W. Imbens. 2006. Large sample properties of matching estimators for average treatment effects.” Econometrica 74 (1): 235–67. https://doi.org/10.1111/j.1468-0262.2006.00655.x.
Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/rmarkdown.
Arel-Bundock, Vincent, Noah Greifer, and Andrew Heiss. Forthcoming. “How to Interpret Statistical Models Using marginaleffects in R and Python.” Journal of Statistical Software, Forthcoming.
Austin, Peter. 2011. An introduction to propensity score methods for reducing the effects of confounding in observational studies.” Multivariate Behavioral Research 46 (3): 399–424. https://doi.org/10.1080/00273171.2011.568786.
Austin, Peter C. 2008. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003.” Statistics in Medicine 27 (April): 2037–49. https://doi.org/10.1002/sim.3150.
Bader-El-Den, Mohammed, Eleman Teitei, and Todd Perry. 2019. Biased Random Forest for Dealing with the Class Imbalance Problem.” IEEE Transactions on Neural Networks and Learning Systems 30 (7): 2163–72. https://doi.org/10.1109/TNNLS.2018.2878400.
Barrett, Tyson, Matt Dowle, Arun Srinivasan, Jan Gorecki, Michael Chirico, and Toby Hocking. 2024. data.table: Extension of data.frame. https://CRAN.R-project.org/package=data.table.
Breiman, Leo. 1996. Bagging predictors.” Machine Learning 24: 123–40. https://doi.org/10.3390/risks8030083.
———. 2001. Random Forests.” Machine Learning 45: 5–32. https://doi.org/https://doi.org/10.1023/A:1010933404324.
Breiman, Leo, Jerome H Friedman, Richard A Olshen, and Charles Stone. 1984. Classification and Regression Trees. Chapman; Hall/CRC. https://doi.org/10.1201/9781315139470.
Brookhart, M. Alan, Sebastian Schneeweiss, Kenneth J. Rothman, Robert J. Glynn, Jerry Avorn, and Til Stürmer. 2006. Variable selection for propensity score models.” American Journal of Epidemiology 163 (12): 1149–56. https://doi.org/10.1093/aje/kwj149.
Cannas, Massimo, and Bruno Arpino. 2019. A comparison of machine learning algorithms and covariate balance measures for propensity score matching and weighting.” Biometrical Journal 61 (4): 1049–72. https://doi.org/10.1002/bimj.201800132.
Cunningham, Scott. 2021. Matching and Subclassification.” In Causal Inference: The Mixtape, 175–240. Yale University Press. https://doi.org/10.2307/j.ctv1c29t27.8.
Dehejia, Rajeev H., and Sadek Wahba. 1999. Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs.” Journal of the American Statistical Association 94 (448): 1053–62. https://doi.org/10.1080/01621459.1999.10473858.
Ferri-García, Ramón, and María Del Mar Rueda. 2020. Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys.” PLoS ONE 15 (4): 1–19. https://doi.org/10.1371/journal.pone.0231500.
Friedman, Jerome H. 2001. Greedy Function Approximation: A Gradient Boosting Machine.” The Annals of Statistics 29 (5): 1189–1232. https://www.jstor.org/stable/2699986.
Goller, Daniel, Michael Lechner, Andreas Moczall, and Joachim Wolff. 2020. Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed.” Labour Economics 65 (March). https://doi.org/10.1016/j.labeco.2020.101855.
Greifer, Noah. 2024a. cobalt: Covariate Balance Tables and Plots. https://CRAN.R-project.org/package=cobalt.
———. 2024b. WeightIt: Weighting for Covariate Balance in Observational Studies. https://CRAN.R-project.org/package=WeightIt.
Heinrich, Carolyn, Alessandro Maffioli, and Gonzalo Vázquez. 2010. A Primer for Applying Propensity-Score Matching.” August. http://dx.doi.org/10.18235/0008567.
Henke, Thorsten. 2016. “MatchItSE.”
Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2011. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference.” Journal of Statistical Software 42 (8): 1–28. https://doi.org/10.18637/jss.v042.i08.
Huntington-Klein, Nick, and Malcolm Barrett. 2021. causaldata: Example Data Sets for Causal Inference Textbooks. https://CRAN.R-project.org/package=causaldata.
Jena, Pradyot Ranjan, Bezawit Beyene Chichaibelu, Till Stellmacher, and Ulrike Grote. 2012. The impact of coffee certification on small-scale producers’ livelihoods: A case study from the Jimma Zone, Ethiopia.” Agricultural Economics (United Kingdom) 43 (4): 429–40. https://doi.org/10.1111/j.1574-0862.2012.00594.x.
King, Gary, and Richard Nielsen. 2019. Why Propensity Scores Should Not Be Used for Matching.” Political Analysis 27 (4): 435–54. https://doi.org/10.1017/pan.2019.11.
LaLonde, Robert J. 1986. Evaluating the Econometric Evaluations of Training Programs with Experimental Data Author.” The American Economic Review 76 (4): 604–20. http://arks.princeton.edu/ark:/88435/dsp010p096689n.
Lampach, Nicolas, and Ulrich B. Morawetz. 2016. Credibility of propensity score matching estimates. An example from Fair Trade certification of coffee producers.” Applied Economics 48 (44): 4227–37. https://doi.org/10.1080/00036846.2016.1153795.
Lee, Brian K., Justin Lessler, and Elizabeth A. Stuart. 2010. Improving propensity score weighting using machine learning.” Statistics in Medicine 29: 337–46. https://doi.org/10.1002/sim.3782.
Liaw, Andy, and Matthew Wiener. 2002. “Classification and Regression by randomForest.” R News 2 (3): 18–22. https://CRAN.R-project.org/doc/Rnews/.
McCaffrey, Daniel F., Greg Ridgeway, and Andrew R. Morral. 2004. Propensity score estimation with boosted regression for evaluating causal effects in observational studies.” Psychological Methods 9 (4): 403–25. https://doi.org/10.1037/1082-989X.9.4.403.
Naimi, Ashley I., Stephen R. Cole, and Edward H. Kennedy. 2017. An introduction to g methods.” International Journal of Epidemiology 46 (2): 756–62. https://doi.org/10.1093/ije/dyw323.
Olson, Matthew A., and Abraham J. Wyner. 2018. Making Sense of Random Forest Probabilities: a Kernel Perspective,” 1–35. http://arxiv.org/abs/1812.05792.
Pedersen, Thomas Lin. 2024. patchwork: The Composer of Plots. https://CRAN.R-project.org/package=patchwork.
R Core Team. 2024. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Ridgeway, Greg, and GBM Developers. 2024. gbm: Generalized Boosted Regression Models. https://CRAN.R-project.org/package=gbm.
Ridgeway, Greg, Dan Mccaffrey, Andrew Morral, Matthew Cefalu, Lane Burgette, and Beth Ann Griffin. 2024. Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the R TWANG Package.” https://doi.org/10.7249/tl136.1.
Rosenbaum, Paul R., and Donald B. Rubin. 1983. The central role of the propensity score in observational studies for causal effects.” Biometrika 70 (1): 41–55. https://doi.org/10.1017/CBO9780511810725.016.
Rubin, Donald B. 1974. Estimating Causal Effects of Treatments in Experimental and Observational Studies.” Journal of Educational Psychology 66 (5): 688–701. https://doi.org/10.1002/j.2333-8504.1972.tb00631.x.
Schuster, Tibor, Wilfrid Kouokam Lowe, and Robert W. Platt. 2016. Propensity score model overfitting led to inflated variance of estimated odds ratios.” Journal of Clinical Epidemiology 80: 97–106. https://doi.org/10.1016/j.jclinepi.2016.05.017.
Setoguchi, Soko, Sebastian Schneeweiss, Alan M. Brookhart, Robert J. Glynn, and Francis E. Cook. 2008. Evaluating uses of data mining techniques in propensity score estimation: a simulation study.” Pharmacoepidemiology and Drug Safety 17 (March): 546–55. https://doi.org/10.1002/pds.
Smith, Jeffrey A., and Petra E. Todd. 2005. Does matching overcome LaLonde’s critique of nonexperimental estimators? Vol. 125. 1-2 SPEC. ISS. https://doi.org/10.1016/j.jeconom.2004.04.011.
Splawa-Neyman, Jerzy. 1923. On the application of probability theory to agricultural experiments. Essay on principles. Section 9.” PhD thesis. https://doi.org/10.1214/ss/1177012031.
Tibshirani, Robert. 1996. Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society 58 (1): 267–88. https://www.jstor.org/stable/2346178.
Tu, Chunhao. 2019. Comparison of various machine learning algorithms for estimating generalized propensity score.” Journal of Statistical Computation and Simulation 89 (4): 708–19. https://doi.org/10.1080/00949655.2019.1571059.
Ushey, Kevin, and Hadley Wickham. 2024. renv: Project Environments. https://CRAN.R-project.org/package=renv.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Xie, Yihui. 2014. knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC.
———. 2015. Dynamic Documents with R and Knitr. 2nd ed. Boca Raton, Florida: Chapman; Hall/CRC. https://yihui.org/knitr/.
———. 2024. knitr: A General-Purpose Package for Dynamic Report Generation in r. https://yihui.org/knitr/.
Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.
Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.
Zhu, Hao. 2024. kableExtra: Construct Complex Table with kable and Pipe Syntax. https://CRAN.R-project.org/package=kableExtra.

R Version Control

Please note that future updates to these packages may impact replication of results.

Package Version Citation
base 4.4.1 R Core Team (2024)
causaldata 0.1.3 Huntington-Klein and Barrett (2021)
cobalt 4.5.5 Greifer (2024a)
data.table 1.15.4 Barrett et al. (2024)
gbm 2.2.2 Ridgeway and Developers (2024)
kableExtra 1.4.0 Zhu (2024)
knitr 1.48.1 Xie (2014); Xie (2015); Xie (2024)
marginaleffects 0.21.0 Arel-Bundock, Greifer, and Heiss (Forthcoming)
MatchIt 4.5.5 Ho et al. (2011)
MatchItSE 1.0 Henke (2016)
patchwork 1.2.0 Pedersen (2024)
randomForest 4.7.1.1 Liaw and Wiener (2002)
renv 1.0.7 Ushey and Wickham (2024)
rmarkdown 2.27 Xie, Allaire, and Grolemund (2018); Xie, Dervieux, and Riederer (2020); Allaire et al. (2024)
tidyverse 2.0.0 Wickham et al. (2019)
WeightIt 1.2.0 Greifer (2024b)