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This project explores and demonstrates the estimation of propensity scores and the integration of

machine learning techniques to enhance their accuracy. Propensity scores are a crucial tool in ob‑

servational studies for reducing bias when estimating causal effects. By leveraging machine learn‑

ing algorithms, this work aims to improve the precision of propensity score estimates, thereby en‑

hancing the reliability of causal inferences. The project first presents a theoretical discussion on

propensity score estimation, detailing the limitations of traditionalmethods and thepotential bene‑

fits of applyingmachine learning approaches. Particularly, gradient boostingmachines have strong

theoretical advantages for probability prediction. Second, a practical, coded tutorial is provided, of‑

fering a step‑by‑step guide on implementingmachine learning techniques for propensity score esti‑

mation. This tutorial serves as a resource for researchers and practitioners whowish to apply these

methods in their own work. Finally, the project includes a replication study investigating the ef‑

fects of Fair Trade coffee certification on producers’ incomes. Using the enhanced propensity score

methods discussed earlier, the study re‑examines previous findings, offering new insights into the

impact of Fair Trade certification. The results underscore the importance of accurate propensity

score estimation in evaluating causal relationships in observational data.
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Preface

This project is submitted in partial fulfillment of the requirements for the Master of Applied Science

in Statistics at the University of Otago. My academic background in economics and politics sparked

an enduring interest in causal inference, particularly its role in shaping evidence‑based policymak‑

ing. However, my focus has evolved to include machine learning — a field that, while not tradition‑

ally central to economics, offers powerful tools for refining causal analysis.

The motivation for this project stems from my desire to bridge the gap between propensity score

methods and machine learning. While the literature is rich with simulation studies, there is a no‑

ticeable lack of comprehensive, tutorial‑style resources that guide readers through the application

of machine learning to propensity score estimation. This project aims to fill that void, providing a

practical and accessible exploration of these techniques with approachable theoretical discussion

and coded examples in R. As a dedicated user of R, all the packages and methodologies discussed

in this project exist in the R ecosystem. Although comparable tools exist in other languages and

software.

The intended audience for this work includes individuals with a foundational understanding of

causal inference andmachine learning, particularly those interested in enhancing propensity score

models. However, my discussion extends beyond propensity scores; much of what is covered is

relevant to anyone using machine learning for probability prediction.
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1 Introduction and Background

Figure 1.1: The comic plays with the difference between causation vs. correlation. Original: https:
//xkcd.com/552/

1.1 What is Causal Inference?

Causal inference is a fieldof study that focuseson identifyingandestimating causal relationshipsbe‑

tween things. It goes beyond correlation by establishing a cause‑and‑effect relationship. Causal in‑

ferencemethods often utilise counterfactual reasoning to estimate the causal effect of an exposure

or treatment on an outcome. Such counterfactual reasoning is used unbeknownst every day. For

example, if someonemisses their bus and thinks, “If I had left home five minutes earlier, I wouldn’t

have missed it,” they are engaging in counterfactual reasoning. In everyday life, policy‑making,
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medicine, and business, understanding the size and nature of a cause is essential for decision mak‑

ing and avoiding misleading conclusions. In this background chapter I discuss key ideas in causal

inference such as the potential outcomes framework, common estimands, and assumptions.

1.2 Layout

Chapter 1 provides a foundational introduction to causal inference, which is essential for under‑

standing the context of this project. This section is designed to provide a concise background for

readers who may not be familiar with causal inference, ensuring they have the necessary founda‑

tion to follow the rest of the project.

Chapter 2 introduces the central focus of this project: the use of machine learning to estimate

propensity scores. The section begins with a traditional introduction to propensity scores, explain‑

ing their role in balancing covariates between treatment and control groups to reduce estimator

bias. This leads into a discussion on the limitations of conventional propensity score estimation

methods, which often rely on logistic regression. These limitations motivate the use of machine

learning algorithms for propensity score estimation. The section then provides a theoretical com‑

parison of common machine learning algorithms such as random forests, bootstrap aggregation

(bagging), and gradient boosting machines. The goal of this section is to provide readers with an

intuitive understanding of howmachine learning can enhance propensity score estimation, setting

the stage for practical applications later in the project.

Chapter 3 presents a comprehensive tutorial for implementing machine learning techniques in the

estimation of propensity scores. This section is highly practical, walking the reader through the

software implementations available for estimating and assessing propensity scores. The National

SupportedWork (NSW) program dataset is used as a running example throughout the tutorial. This

dataset is commonly used in causal inference studies due to its simplicity and well‑documented
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treatment effect,making it an ideal example candidate. By theendof this section, readers shouldbe

able to apply these methods to their own datasets, replicating the steps and analyses presented.

Chapter 4 provides a detailed replication study of Jena et al. (2012), a paper that examines the

impact of fair trade certification on farmers’ livelihood in Ethiopia. This section builds on the orig‑

inal findings of the aforementioned authors by applying machine learning‑based propensity score

methods. The replication study is designed to demonstrate the practical advantages of using ma‑

chine learning for propensity score estimation in a real‑world setting. Specifically, my replication

re‑examines the causal effect on per capita income. This comparison highlights howmachine learn‑

ing can potentially lead to more accurate and reliable estimates of treatment effects.

Chapter 5 provides a comprehensive overview of the findings from this project. It synthesizes the

key insights gained from the theoretical discussions, the practical tutorial, and the replication study.

This section also outlines potential avenues for future research, emphasizing the importance of con‑

tinued exploration of machine learning methods in causal inference.

Appendix A offers supplementary material that supports the main content of the project. This in‑

cludes explanations of the datasets used, along with coded examples of loading and manipulating

the data in R. Additionally, Appendix B presents custom functions developed for this project, which

are used to present results and facilitate analyses throughout the project.

1.3 Potential Outcomes Framework

The Potential Outcomes Framework, also known as the Rubin Causal Model, was introduced by Ru‑

bin (1974) and builds upon the work of Splawa‑Neyman (1923). The framework dominates how

researchers think about causal inference by formalising counterfactual reasoning. Rubin defines a

causal effect as a defined comparison between two states of the world. For each individual, there
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are two potential outcomes: one if they receive the treatment and one if they do not. The causal

effect is the difference between these two potential outcomes. Hence we have two potential out‑

comes, one with the treatment and one without.

The framework is highly flexible and adaptive, extending beyond traditional notions of “treatment”

inmedical or experimental contexts. It can apply to any kind of intervention, exposure, or condition

that could influence an outcome, whether it’s a medical treatment, policy change, environmental

exposure, or even abstract events like decisions or natural occurrences. Philosophically, the frame‑

work aligns with a view of the world that considers reality through alternative scenarios or what‑

ifs.

Consider a binary treatment variable, let the treatment for an observation be a random variable, 𝑇 ,

witha realisation 𝑡𝑖 ∈ {0, 1}under control and treatment. Theabsenceof treatment is refer toas the

control state. Let 𝑌𝑖(1) and 𝑌𝑖(0) be the two potential outcomes for observation 𝑖 under treatment

and control. Let the individual treatment effect (ITE) be defined as the difference between the two

potential outcomes:

𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0). (1.1)

Note 1: Fundamental Problem of Causal Inference

There is a clear problem that only theoutcomeunder either treatment or control is observable.

If our observations are on people, then it is logically impossible for an individual to simultane‑

ously both receive and not receive the treatment. For example, if someone takes medication

to relieve a headache and their headache improves, it could never knowwhatwould have hap‑

pened if they did not take themedication. This leads to the commonly discussed fundamental

problemof causal inference ‑ it is impossible toobservebothpotential outcomes. A counterfac‑

tual, the counter to the observed outcome, is infeasible and can never be practicably known.
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Let the observed outcome for 𝑖 be denoted 𝑦𝑖(1) and 𝑦𝑖(0) under treatment or control. Many causal

inference methods involve finding or estimating a counterfactual to compare outcomes to sove

some variation of Equation 1.1. Let an estimated potential outcomes for 𝑖 be denoted ̂𝑦𝑖(1) and
̂𝑦𝑖(0) under treatment or control.

1.4 Estimands

In causal inference, there are multiple parameters of interest called and estimand. The preferred

estimand depends on the motivating example, discipline, or intended interpretation of a result.

The most basic estimand is the average treatment effect or the ATE denoted 𝜏𝐴𝑇 𝐸 which is the av‑

erage amount of effect on all individuals in the population regardless of whether they receive the

treatment or not. This can be written as:

ATE = 𝐸[𝜏𝐴𝑇 𝐸]

= 𝐸[𝑌 (1) − 𝑌 (0)]

= 𝐸[𝑌 (1)] − 𝐸[𝑌 (0)].

(1.2)

Under certain conditions, suchas a randomised control trial, Equation1.2 canbeanestimatedusing

the explicit equation:

ÂTE = ̂𝜏𝐴𝑇 𝐸 = 1
𝑁𝑡

𝑛
∑
𝑖=1

(𝑦𝑖 ∣ 𝑡𝑖 = 1) − 1
𝑁𝑐

𝑛
∑
𝑖=1

(𝑦𝑖 ∣ 𝑡𝑖 = 0), (1.3)

where𝑁𝑡 and𝑁𝑐 are is the number of treated and control observations. Essentially, Equation 1.3 is

just a difference in the mean outcome between the two groups.
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The second parameter of interest is the average treatment effect on the treated or ATT and is the

difference (contrast) between the potential outcomes of those who actually receive the treatment.

In other words, considering observationswhere 𝑡𝑖 = 1, what is the effect of the treatment? This can

be written as:

ATT = 𝜏𝐴𝑇 𝑇 = 𝐸[𝜏 ∣ 𝑇 = 1]

= 𝐸[𝑌 (1) − 𝑌 (0) ∣ 𝑇 = 1]

= 𝐸[[𝑌 (1) ∣ 𝑇 = 1] − 𝐸[𝑌 (0) ∣ 𝑇 = 1].

(1.4)

The final parameter is the average treatment effect on the control or ATC which is similar to the ATT

but on those who are actually under control. The ATC is the contrast between the two potential out‑

comes for individuals which are actually in the control. This is also known as the average treatment

effect on the untreated or the ATU. It can be written as:

ATC = 𝜏𝐴𝑇 𝐶 = 𝐸[𝜏 ∣ 𝑇 = 0]

= 𝐸[𝑌 (1) − 𝑌 (0) ∣ 𝑇 = 0]

= 𝐸[[𝑌 (1) ∣ 𝑇 = 0] − 𝐸[𝑌 (0) ∣ 𝑇 = 0]

(1.5)

For the estimated ATT and ATC, no explicit expression exist. Estimation is completed using

G‑methods to obtain contrasts of potential outcomes (see Naimi, Cole, and Kennedy 2017).

1.5 Assumptions in Causal Inference

Assumptions are made for the potential outcomes framework to be logically coherent and for esti‑

mands to be identifiable. Firstly, independencemust be assumed, implying the potential outcomes
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are independent of 𝑇 . This assumption is also known as unconfoundedness, ignorability, or selec‑

tion on observables, and means there is no confounding relationship between the treatment and

potential outcomes. This matters as confounding variables can create a spurious relationship be‑

tween the treatment and the outcome, leading to biased estimates of the treatment’s effect. Hence,

the treatment assignment should be random, allowing an unbiased estimate. Mathematically inde‑

pendence can be stated as:

𝑌 (1), 𝑌 (0) ⟂⟂ 𝑇 . (1.6)

Independence implies exchangeabilitymeaning the individuals in the treatment and control groups

could be swapped and the potential outcomes are still the same. A weaker assumption is condi‑

tional independence that states that assignment into treatment is random conditioned on some

𝑋:

𝑌 (1), 𝑌 (0) ⟂⟂ 𝑇 ∣ 𝑋. (1.7)

The assumption requires that covariates must be known and measurable which may not always

hold. Independence motivates the use of randomisation in experimental contexts as this should

guarantee independence. Chapter 2 discusses conditional independence and uses propensity

scores to condition on covariates.

A second assumption is positivity. Thismeans that for each 𝑖, the condition probability when𝑋 = 𝑥
of being in either the treatment or control group is strictly between 0 and 1. In other words,Pr(𝑇 =
1 ∣ 𝑋 = 𝑥) > 0 and Pr(𝑇 = 0 ∣ 𝑋 = 𝑥) > 0. This ensures that all observations have at least some

chance of receiving either the treatment or control. If not, it is theoretically impossible to obtain

both potential outcomes and so the treatment effect cannot be estimated.
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Building on positivity, the third assumption is common support. This implies the treatment and

control groups overlap in terms of their characteristics. Overlap is crucial because it ensures that

for every person in the treatment group, there are similar individuals in the control group—similar

in terms of age, gender, income, and other factors. Mathematically, for all of 𝑖, if the conditional

probability of being treated, Pr(𝑇 = 1 ∣ 𝑋 = 𝑥), is near to 1, and Pr(𝑇 = 0 ∣ 𝑋 = 𝑥) is near to 0,
then there are no compatible cases and there is no common support. Without compatible cases, it

is not possible to satisfy exchangability and so treatment effect estimates are likely to be biased.

The fourth assumption is consistency between the potential outcome and observed outcome. For

every 𝑖, the observed outcome under treatment equals the potential outcome under treatment. Ad‑

ditionally, the observed outcome under control equals the potential outcome under control. Math‑

ematically, 𝑦𝑖(1) = 𝑌𝑖(1) and 𝑦𝑖(0) = 𝑌𝑖(0) that leads to a switching equation which defines 𝑦𝑖 as

a function of the potential outcomes:

𝑦𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 − 𝑇𝑖)𝑌𝑖(0). (1.8)

Notice the logic of this equation, when 𝑇 = 1 then 𝑦𝑖 = 𝑌𝑖(1) as the second term becomes zero.

Similarly, when 𝑇 = 0 then 𝑦𝑖 = 𝑌𝑖(0) as the first term becomes zero.

The final keyassumption is called the stableunit treatment valueassumptionorSUTVA. This is a com‑

plex way of stating that there is no interference between observations. More specifically, neither

potential outcome is affected by the treatment status of any other individual. To borrow terminol‑

ogy fromeconomics, there are no externalities or spillover effects fromoneobservations’ treatment

status to another observations’ potential outcomes.
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Note 2: Why Assumptions Matter

In causal inference, especially when working with observational data, it is critical that these

assumptions are considered. If these assumptions do not hold, any model, regardless of the

modellingassumptions,will nothavea causal interpretation. Unfortunately, thereareno tests

that can confirm if these causal assumptions hold and thus researchers must understand the

context and data generating process in which they operate.
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2 Propensity Scores and Machine Learning

2.1 A Conventional Approach: Propensity Scores and Balance

In a randomised control trial (RCT), researchers believe treatment and control groups are similar

because of randomisation. In this case, the similar groups are compatible and should not have sys‑

tematic differences. In observational data, the exposure to a treatment is unlikely to be random,

implying there may be systematic differences between groups. Systematic differences refer to con‑

sistent variations or disparities between groups in the study. These differences are not due to ran‑

dom chance but rather indicate a pattern or trend, perhaps due to selection‑bias. As groups are not

comparable, Equation 1.3 leads to a biased estimate of the treatment effect.

For example, consider the causal question: “Howmuch does obtaining a bachelors degree increase

lifetime earnings?”. Individuals who complete a bachelor’s degree are not selected at random for

university programs (treatment) and may have different observable attributes than those who do

not attend a university (control). Perhaps those who attend university have higher academic abili‑

ties, higher motivation, or grew up with parents with higher income. Because of these systematic

group covariate differences, a simple comparison of mean income could lead to attributing univer‑

sity attendance as the cause of higher incomes when the effect is confounded by the differences in

covariates between groups. In this example, the confounding covariates are academic ability, moti‑

vation, and parental income that impact the probability of someone obtaining a bachelors degree.
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This discussion introduces the idea of covariate balance which is a key concept behind underlying

propensity score methods.

Note 3: What is Covariate Balance

Covariate balance is the idea that covariates are approximately equivalent across treatment

and control groups. If the distribution of each covariate is the same across each group, then

the covariates are balanced and a meaningful comparison between groups can be made.

Equally, similar covariates across groups implies exchangability as the two groups should be

similar (thus can be exchanged). There is a conceptual link between covariate balance, uncon‑

foundedness, and exchangeability meaning that Equation 1.6 is satisfied when covariates are

balanced.

In the bachelor’s degree example, suppose that comparable treatment and control individuals are

matched together to create balanced pairs. Between these pairs, covariates are balanced such as

the same academic ability, motivation, parental income, geographic residence etc. The covariates

are said to be conditioned on bymatching individuals on these covariates. Comparing the balanced

matchedpairs should result in a robust estimateof abachelorsdegree’s impact onearningsbecause

the individuals are exchangeable and satisfy Equation 1.7. However, practically this matching is dif‑

ficult to performas exactmatches cannot bemade as the number of covariates increases. For exam‑

ple, finding twopeoplewith the samegender is simple but finding twopeoplewith the samegender,

age, education, income,motivation, location, experience, and race is nearly impossible. Thus, there

is a dimensionality problem as the dimension of the number of covariates increases.

Rosenbaum and Rubin (1983) offer a valuable tool for analysing observational data called the

propensity score. The propensity score is the probability of treatment assignment conditioned on

observed covariates. Essentially, the propensity score reduces the dimension of the number of

covariates to a single dimension to avoid the dimensionality problem. Let the propensity score be

denoted as 𝑒(𝑋) and be expressed as:
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𝑒(𝑋) = 𝑃(𝑇 = 1|𝑋 = 𝑥). (2.1)

A prediction of the conditional probability of treatment on covariates is a good summary of the co‑

variate’s effect on receiving the treatment. The covariate imbalancebetweenbachelors degrees and

controls arose from people self‑selecting themselves into a bachelors degree programme because

of these covariates. For example, people with higher motivation and academic ability are more

likely to go to university. If it is the covariates that impact the probability of going to university, then

a prediction of the probability of going to university based on these covariates should summarise

the covariate effects.

It is hoped that conditioning on this propensity score should balance the data and meet the condi‑

tional independence assumption stated in Equation 1.7. There are many sources that offer a com‑

prehensive guide to propensity score methods such as (Cunningham 2021, chap. 4) who provides

applications and coded examples in R, Python, and Stata.

Note 4: Balance and Propensity Scores

Note that an RCT will satisfy Equation 1.6 as randomisation implies the potential outcomes

are independent of the treatment assignment. Propensity scoremethods aim to satisfy Equa‑

tion 1.7 as the potential outcomes are independent of the treatment status conditioned on

some covariates. Thus, 𝑌 (1), 𝑌 (0) ⟂⟂ 𝑇 ∣ 𝑋 is satisfied by 𝑌 (1), 𝑌 (0) ⟂⟂ 𝑇 ∣ 𝑒(𝑋).
Conditioning on the propensity score aims to replicate anRCT in observational data by balanc‑

ing covariates between groups. When observations are conditioned on their propensity score,

differences in outcomes can be confidently attributed to the treatment itself, rather than to

pre‑existing differences in covariates.

Two commonmethods that use propensity scores are propensity scorematching (PSM) and inverse
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propensity weighting (IPW).1 PSM creates matched sets with similar propensity scores. IPW creates

a balanced pseudo‑population, where observations are weighted on the inverse of the propensity

score. The pseudo‑population is created by up‑weighting observations with a low propensity score

and down‑weighting observations with a high propensity score.

At a high level, the conditioned property of the propensity score is translated into amodel by using

PSMor IPW.King andNielsen (2019) provide anotable criticismof propensity scorematching,which

is a very interesting read. In the following examples, IPW is used due to theoretical advantages and

ease of software implementation.

2.1.1 Assessing balance

Balance assessment is an important step to ensure that conditioning on the propensity score has

been successful. A commonly recommended measure of covariate balance is the standardised

mean difference or SMD. This is the difference in the mean of each covariate between treatment

groups standardised by a standardization factor so that it is on the same scale for all covariates.

SMDs close to zero indicate good balance. P. Austin (2011) notes that 0.1 is a common threshold

for determining if a variable is balanced. This threshold is a guideline to the approximate region

that indicates a covariate is balanced and should not be interpreted as a binary rule. Additionally, a

variance ratio below 2 is generally acceptable. For brevity, my analysis only considers the SMD.

2.1.2 Propensity Score Modelling with Logistic Regression

A conventional propensity score model uses logistic regression to predict a probability between 0
and 1. Models may be specified to include interaction terms and polynomial terms to capture com‑

1IPW is also commonly known as inverse probability of treatment weighting (IPTW). IPTW uses propensity scores and
can equally be called IPW.
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plex trends in the data. There are a range of approaches for specifying a propensity score model,

but the process is a heuristically driven art rather than science. (see Brookhart et al. 2006; Heinrich,

Maffioli, and Vázquez 2010). One suggestion is to include two‑way interaction terms between co‑

variates and squared terms and then remove terms which are not statistically significant. Notably,

many researchers do not discuss the specification of propensity models in their papers. P. C. Austin

(2008) reviews 47papers that usepropensity scores and find fewperformadequatemodel selection,

assess balance, or apply correct statistical tests.

It is important to note that the true propensity score is never observable. A propensity score that

is close to the theoretically true probability is well calibrated. Poorly calibrated propensity scores

may result in poor balance and biased estimation of the treatment effect. Propensity scores may

be poorly calibrated as covariates may be omitted by error, poorly measured, or be unobservable.

Logistic regressionmaynot predict calibrated scores if the true relationship is non‑linear or involves

complex interactions between covariates. Another important note is that the propensity model it‑

self does not have an informative causal interpretation. In logistic regression, the coefficients are

the log‑odds of the treatment assignment for each variable which is not informative of the desired

estimand.

The first application of machine learning in causal inference was to predict propensity scores. De‑

spite this, logistic regression still appears to be the most common model for predicting propensity

scores.

2.2 Probability Machines: Probability Theory and Machine Learning

Supervisedmachine learning usually focuses on classifying observations into groups, or predicting

continuous outcomes. Probability prediction is a hybrid of these tasks, aiming to predict the contin‑
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uous probability an observation belongs to a certain class. Machine learning methods that predict

probabilities are sometimes called probability machines.

Probability machines are valuable in applications requiring calibrated probability predictions. For

example, probability machines can predict loan defaults or other adverse events in finance. In mar‑

keting, they estimate the likelihood of customer response to a campaign. Gamblers and bettors

want robust probability predictions to enhance their betting strategies. Probability machines can

be applied wherever calibrated probability predictions are needed.

Probability machines offer many advantages over parametric methods like logistic regression:

1. Improved Calibration: Probability machines often provide better‑calibrated predictions by

capturing complex data relationships.

2. FlexibleModelling: Unlike parametricmethods like logistic regression, probabilitymachines

don’t rely on assumptions of additivity or linearity, allowing them tomodel intricate relation‑

ships that parametric models miss.

3. Efficient Feature Selection: These machines automatically select features, making them

ideal for high‑dimensional datasets where manual selection is impractical.

4. Handling Missing Data: Probability machines handle missing data robustly, minimizing the

need for extensive data reprocessing and imputation.

5. Simplified Data Exploration: By exploring complex data structures in a data‑driven way,

probability machines simplify model specification. For instance, tree‑based models remain

unaffected by adding squared or interaction terms, streamlining the modeling process.

In causal inference, probabilitymachines can predict better calibrated propensity scores and better

estimate treatment effects. This discussion aims to clarify the use of probabilitymachines in causal
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inference given the unique requirements of propensity score specification. Probability machines

are theoretically complex and there are unanswered questions in this space.

Note 5: A Particularly Important Method: Classification and Regression Trees

Moving forward, a particularly important model is the Classification and Regression Trees.

Breiman et al. (1984) introduces method, commonly known as CART, that partitions data ac‑

cording to a splitting criterion, resulting in an “if this, then that” interpretation. CART models

are also widely known as a decision trees. The splits are recursive, meaning splits are applied

upon previous splits, such as trees breaking into branches and then leaves. The splits are also

greedy as each potential split only considers information available at that split instead of past

or future splits. Each parent node is split to create two child nodes and the final nodes of a

CARTmodel are called terminal nodes.

For example, when classifying pets into cats versus dogs, the first split might be“if barks” and

the second is “heavier than 5 kg”. The tree says If it barks and is heavier than 5 kg, then it is a

dog.

A single classification tree typically uses the Gini index to determine its splits. Each split aims

to maximise node purity, meaning the nodes contain the highest possible proportion of one

class. The Gini index measures impurity, with lower Gini values indicating higher purity. Intu‑

itively, the aimof a classification tree’s loss function is tominimise themisclassification rate of

observations. By selecting splits that reduce the Gini index, the tree minimises classification

error and increases accuracy.

2.2.1 Choice of Loss Function and Probability Prediction

The loss function measures the difference between a model’s predictions and the actual target val‑

ues, serving as a measure of a model’s performance. Different loss functions influence a model’s
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behaviour so the choice of loss function is important. Classification models predict the category

that each observation belongs to not the probability of each class. For instance, in fraud detection,

banks use classifiers to distinguish between fraudulent and routine transactions. Many classifica‑

tion loss functions minimise classification errors and improve accuracy as this results in the best

classification. A loss function like the Gini index is effective for classification problems but it is un‑

clear if this applies to probability problems. In other words, minimizingmisclassification error may

not lead to accurate probability predictions.

At a high level, to classify an observation, 𝑥𝑖 as an𝐴 or𝐵, amodel needs to determine ifPr(𝑥𝑖 = 𝐴)
is less than or greater than 0.5. If P̂r(𝑥𝑖 = 𝐴) > 0.5, then it is more likely to be an 𝐴 and if P̂r(𝑥𝑖 =
𝐴) < 0.5 then it is more likely to be a 𝐵. Thus, if 𝑥𝑖 is an 𝐴, it is trivial if P̂r(𝑥𝑖 = 𝐴) is 0.51 or 0.99
as this makes no difference to the classification as an 𝐴. But the difference between P̂r(𝑥𝑖 = 𝐴) =
0.51 and 0.99 is extreme for a probability machine. It is important to understand that classification

models are optimised for classification accuracy rather than probability prediction. This distinction

affects the performance of ensemble methods like random forests or bagging ensembles that use

classification trees for probability prediction.

2.2.2 Bagging and Random Forest as Probability Machines

Note 6: A Quick Note on Ensemble Learning

Ensemble learning refers to a general framework of machine learning that combines multiple

simple models to create a better overall model. The philosophy behind ensemble learning is

rooted in thewisdomof crowdsprinciple,where the collectivedecisions frommultiplemodels

often outperform that of individual models. Often, ensemble learning methods use multiple

CARTmodels.

Bagging ensembles, random forests, and gradient boostingmachines are allmachine learning
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methods that combine CART models and are all examples of ensemble learning algorithms.

These methods are introduced in the following discussion.

Consider an ensemble method called the lazy ensemble that combines multiple CART trees. Each

tree is fitted on the same data without any cross validation. In this ensemble, class probabilities

are determined through a vote count method. Within the lazy ensemble, each tree makes a class

prediction based on the majority class in a terminal node. For instance, if 𝑥𝑖 lies in a terminal node

where 80% of the observations are classified as an 𝐴, that individual tree will classify 𝑥𝑖 as 𝐴. The

ensemble’s overall prediction for 𝑥𝑖 is derived from the proportion of trees that classify 𝑥𝑖 as𝐴 or𝐵.

Thus, the ensemble counts votes for each class across the ensemble. Let 𝑇 be the total number of

trees and 𝑏𝑡 be the 𝑡‑th tree in the ensemble. Let 𝕀(𝑏𝑡(𝑥𝑖) = 𝐴)be the indicator function that returns
1when 𝑏𝑡 predicts that observation 𝑥𝑖 belongs to class𝐴. The probability of class𝐴 for observation

𝑥𝑖 is calculated as:

P̂r(𝑥𝑖 = 𝐴) = 1
𝑇

𝑇
∑
𝑡=1

𝕀(𝑏𝑡(𝑥𝑖) = 𝐴). (2.2)

Olson and Wyner (2018) note bias towards predictions of 0 or 1 when trees in an ensemble frame‑

work are highly correlated anda vote countmethod is used. In the lazy ensemble, each tree is identi‑

cal and perfectly correlated implying that each treewillmake the the same class prediction for each

𝑥𝑖. For such an ensemble, the predicted probabilities will will be exactly 0 or 1 using a vote count.

Of course a lazy ensemble of identical treeswould never be used but the intuition still applies in the

real world where ensembles may have some degree of correlation. The larger the correlation, the

more the probability predictions will exhibit a divergence bias towards 0 and 1. Notably, divergence
bias is not problematic in classification applications, as a larger number of trees correctly classifying

the observation is encouraging.
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To reduce tree correlation and improve upon the lazy ensemble, a bagging ensemble (see Breiman

1996) trains each tree on a randomly selected bootstrapped sample of the data. Random forests

(see Breiman 2001) further reduce tree correlation by considering a random number of variables at

each split, commonly referred to as 𝑚𝑡𝑟𝑦 in software implementations. When 𝑚𝑡𝑟𝑦 is equal to to

number of predictors, themodel considers all variables at each split and the random forest is equal

to a bagging ensemble. Note that these ensemble methods typically use a vote count method in

the sameway as the lazy ensemble. A lower𝑚𝑡𝑟𝑦 should reduce the correlation between trees and

decrease divergence bias as the structure of the tree is modified by the selected variables at each

split. However, a lower 𝑚𝑡𝑟𝑦 also introduces other theoretical problems.

Consider the scenariowhere thebinaryoutcome (treatment andcontrol) of theensemble is strongly

related to a single predictor and weakly related to other noisy predictors. If 𝑚𝑡𝑟𝑦 is low then each

split may not consider the strong predictor and more commonly splits on weak or noisy predictors.

Each predictor has a chance of 𝑚𝑡𝑟𝑦
number of predictors of selection at each split implying a lower 𝑚𝑡𝑟𝑦 de‑

creases the chance of a splitting on the strong predictor. Splits on the weak or noisy predictorsmay

not result in ameaningful increase innodepurity andsuccessive splitsmay result in impure terminal

nodes that poorly predict the class of 𝑥𝑖 in each tree. Such an ensemble may have highly unstable

probability predictions.

Additionally, consider there is a class imbalance and themajority of observations are classified as𝐴
not 𝐵. The terminal nodes of each tree within an ensemble are more likely to contain the majority

class. Consequently, there is a majority class bias as each tree in the ensemble is more likely to

misclassifying an observation as an 𝐴 because the terminal nodes have a higher proportion of 𝐴
due to the higher proportion of 𝐴’s in the data overall.
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Note 7: Class Imbalance and Machine Learning

When there is adifference in thenumberof observations in eachclass, this is called class imbal‑

ance. It is important to note that majority class bias exists in conventional machine learning

classification tasks. Bagging ensembles and random forest are well known to be sensitive to

class imbalancemeaning that class predictions are biased towards themajority (see Bader‑El‑

Den, Teitei, and Perry 2019).

However, the class imbalance problem is particularly notable when predicting probabilities.

The probability prediction from a vote count method is very sensitive to a change in the votes

from each tree. Suppose that balanced data results in 80/100 trees classifying 𝐵 as 𝐵 and

imbalanced data (more 𝐴 than 𝐵) reduces correct classifications of 𝐵 to 60/100. This results
in a 20% margin of error in probability estimates but the classification remains as 𝐵.

Individually, a low 𝑚𝑡𝑟𝑦 can lead to unstable probability predictions and class imbalance can cre‑

ate bias towards the majority class. But probability machines are particularly effected when there

is both a low 𝑚𝑡𝑟𝑦 and class imbalance. Because successive noisy splits (relating to a low 𝑚𝑡𝑟𝑦) re‑
sult in impure child nodes, the effects of majority class bias are exaggerated. Without the ability to

separate the classes, the majority class will dominate terminal nodes. If the ensemble was able to

split on informative covariates each time (𝑚𝑡𝑟𝑦 is higher), then it should still be able to create pure

splits even when there is some class imbalance. In other words, if there is a small class imbalance,

reducing 𝑚𝑡𝑟𝑦 may reveal majority class bias not visible at higher 𝑚𝑡𝑟𝑦’s. Equally, if there is low

𝑚𝑡𝑟𝑦, then even a small class imbalance can lead to majority class bias.

As a general philosophy, ensemble learning methods based on classification trees are poor at pre‑

dictingprobabilities. If𝑥𝑖 hasaknownmembershipof𝐴, andanunknownPrtrue(𝑥𝑖 = 𝐴) = 0.6, the
ensemble might classify 𝑥𝑖 correctly 90% of the time leading to P̂r(𝑥𝑖 = 𝐴) = 0.9. As a probability
machine, the ensemble has overestimated the probability by 30% even though a 90% classification

accuracy is excellent. To predict Prtrue(𝑥𝑖 = 𝐴) = 0.6, an ensemble needs to incorrectly classify
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𝑥𝑖 in 40% of its trees. However, bagging ensembles and random forests are designed to maximise

classification accuracy and there is no incentive for the model to intentionally achieve a specific

misclassification rate that aligns with the true probability.

To exemplify these theoretical points, the National Supported Work (NSW) programme is a com‑

monly discussed dataset in causal inference. The data results from a randomised controlled trial

with 445 total participants, 185 in the programgroup, and 260 in the control group, so the true prob‑
ability of treatment for each individual can be calculated as 185/445 = 0.42 or 42%. Further infor‑

mation about this data is found in Appendix A. Randomisation should ensure that the probability of

treatment is independent of the predictors and so all predictors should be noisy or weak. Although

Figure 2.2 and Table 3.1 suggest some covariates do have a greater impact on the probability of

participating in the programme, which echoes research by Smith and Todd (2005) who suggest ran‑

domisation is imperfect in the NSWdataset. Thus, the “best” calibrated probabilitymodel will have

a distribution centred near 0.42 with some noise due to imperfect randomisation.

Figure 2.1 shows both divergence bias and majority class bias using randomForest() to fit both

the random forest and bagging ensemble. Recall that a bagging ensemble is a random forestmodel

when𝑚𝑡𝑟𝑦 is equal to thenumberofpredictors andso specifyingmtry = 7 in therandomForest()

function fits abaggingensemble. Additionally, logistic regressionusing theglm() functionprovides

a meaningful comparison.

Figure 2.1 shows the logistic regressionmodel has identified a central tendency andmost propensi‑

ties arebetween0.25and0.75which roughlyalignswith the trueprobability. Thebaggingensemble

has clear evidence of divergence and the majority of predictions are outside 0.25 and 0.75 which is

likely related to tree correlation. For the random forest with 𝑚𝑡𝑟𝑦 = 1, a significant number of the

treatment and control observations are centred near the control area (𝑇 = 0) with a wide range

of other predictions. Recall that the control group is the majority class. Reducing 𝑚𝑡𝑟𝑦 from 7 to

1 reveals the majority class bias reinforcing the theoretical discussion that a combination of low
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Figure 2.1: Compares the density estimates of the propensity scores for control and participant
groups in the National SupportedWork programme. randomForest() fits a random for‑
est with mtry = 1 and bagging ensemble with mtry = 7. The default values of ntree
= 500 and nodesize = 1 are used. A logistic regressionmodel is included for a compar‑
ison.
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Figure 2.2: Compares the variable importance assigned to each variable from a bagging ensemble
fitted on data from the National Supported Work programme. randomForest() fits a
baggin ensemble with mtry = 7with default ntree = 500 and nodesize = 1.
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𝑚𝑡𝑟𝑦 and class imbalance is especially troubling. The model over predicts the majority class and

has unstable predictions otherwise. Both random forest and bagging ensembles have performed

poorly.

The tuning of 𝑚𝑡𝑟𝑦 faces double jeopardy and is another important area of discussion in proba‑

bility machines. The selection of 𝑚𝑡𝑟𝑦 is typically carried out in with a classification loss function

such as accuracy or out‑of‑bag error. Olson and Wyner (2018) compares tuning 𝑚𝑡𝑟𝑦 measured by

classification accuracy andmean square error of known simulation probabilities and finds that the

optimal value of𝑚𝑡𝑟𝑦 for classification differs from probability prediction.2 In other words, if a grid

search finds that 𝑚𝑡𝑟𝑦 = 3 is optimal for a classification task, this does not imply that 𝑚𝑡𝑟𝑦 = 3 is

optimal for predicting probabilities. Putting this together, 𝑚𝑡𝑟𝑦 is a double‑edged sword, typically

controlled with an imperfect method.

Random forests and bagging ensembles seem to be troubled as probability machines but this does

not mean that bagging and random forest cannot perform well. In various simulation studies, they

perform excellently as discussed in Section 2.3. Perhaps the nature of the data is informative for the

potential success of a random forest or bagging ensemble.

Heuristically, divergence bias and majority class bias will most affect a probability machine when

there is considerable overlap of true probabilities between groups. Recall the meaning of common

support and overlap from Section 1.5. If there is overlap and a central region of true probabilities,

then the effects of divergence biasmay be very pronounced. Similarly, common supportmaymake

it even harder to increase purity in child nodes, as the covariates will lack clear split points. When

combinedwith weak predictors relating to a low𝑚𝑡𝑟𝑦, the terminal nodes of each treemay be rela‑

tively impure leading to amajority class bias. Alternatively, if true probabilities exist near 0 or 1 and
there is a clear separation of class, divergence bias may trivially effect probability estimation as the

probabilities already exist in that region. If there is a clear separation of class, then weak predictors
2Note that tuning𝑚𝑡𝑟𝑦 for themean square of probability prediction is only possible by design of the simulation study
and is not possible in applications, as the true probability is unknown.
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relating to a low𝑚𝑡𝑟𝑦 may still createmeaningful splits and pure terminal nodes. It is worth noting

that propensity score methods require datasets with overlap to meet the assumptions required to

determine causality.

2.2.3 Gradient Boosting Machines as Probability Machines

Moving beyond classification trees in random forests or bagging ensembles, Friedman (2001) intro‑

duced the Gradient Boosting Machine (GBM). A GBM sequentially constructs CART trees to correct

errors made by previous trees. Employing a gradient descent process, each new tree is fit on the

pseudo‑residuals of the previous iteration. This means that with each iteration, the GBM takes a

gradient step down the global loss function, incrementally minimizing the loss function to reach a

minimum. A learning rate controls the contributionof eachweak learner to the finalmodel. Byusing

a small learning rate, themachine learns slowly so that it can slowly descend the loss function. This

allows for finer adjustments during the iterative process to better capture patterns in the data.

GBMs can be generalised to many different applications by minimizing a different loss function

which can be specified as any continuously differentiable function. For binary outcomes, a GBM

employs multiple regression trees and a logistic function to transform regression predictions into

probabilities. Specifically, the logistic function used is:

P̂r(𝑥𝑖 = 𝐴) = 1
1 + exp(−model(𝑥𝑖))

. (2.3)

This logistic function is the same as in logistic regression, so a GBMwith a binary class is sometimes

called boosted logistic regression. The ensemble aims to minimise the Bernoulli deviance, which

is equivalent to maximizing the Bernoulli log‑likelihood with logistic regression. Maximizing the

log‑likelihood ensures that the predicted probability distribution is as close as possible to the true
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probability distribution given the data. The full GBMmodel, 𝑓𝑇 (𝑥) after 𝑇 iterations can be written

as:

𝑓𝑇 (𝑥𝑖) = 𝑏1(𝑥𝑖) + 𝜆
𝑇

∑
𝑡=1

𝑏𝑡(𝑥𝑖). (2.4)

Inside abase tree, each split considers all variables andmakes themost informative split to descend

the loss function using gradient descent. GBMs utilise many weak learners, such as a regression

tree with a single split called a regression stump. However, additional splits enable the model to

capture interactions between terms, whichmay increase probability calibration in complex or high‑

dimensional datasets.

By outputting probability predictions and avoiding the flaws of vote methods in other ensemble

techniques, as well as allowing a probability distribution‑based loss function optimal for probabil‑

ity prediction, GBMs stand out as a highly effective probability machine. Since GBMs predict prob‑

abilities from a logistic function, they avoid problems associated with a vote count method. The

implementation and workflow to fit a GBM for propensity scores is discussed in Section 3.1.

Figure 2.3 shows the propensity scores resulting from a GBM model using the gbm package on the

NSW data provides. A GBM is a notable performance improvement to random forest and bagging

shown in Figure 2.1. Recall that a “better” model would predict probabilities near to 42% as this is

the treatment/control share in the randomised NSW data.

2.2.4 Overfitting

Overfitting is a common concern when fitting machine learning models, as models can capture

noise and random variations in the training data. An overfit model typically shows excellent per‑

formance on the training data but will perform poorly on new, unseen data because it cannot gen‑
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Figure 2.3: Density estimates of the propensity scores for control and participant groups in the
National Supported Work programme using the gbm package with distribution =
"bernoulli", data = nsw_data, n.trees = 10000, and shrinkage = 0.0001.
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eralise beyond the specific patterns of the training set. For instance, consider a machine learning

algorithm used by a bank for fraud detection. In this scenario, an overfit model would struggle to

classify transactions correctly as it has learned the noise and specific variation in the training data

rather than theunderlying patterns of fraud. Cross validationor test/train splitting canprevent over‑

fitting to ensure a model can generalise to unseen data.

However, themodel is not required to generalise a propensity scoremodel as different datasets will

have a different model. Instead, the emphasis of predicting propensity scores is to create balance

in the data. A model is effective if it balances covariates between groups, even if it is overfit in a

conventional sense.

Note 8: Overfitting in Logistic Regression

There is limited research on how overfitting a logistic regression model affects estimating

treatment effects. In logistic regression, overfitting occurs when there are too many param‑

eters and so the maximisation of the log‑likelihood function is difficult because of noise. One

study that investigates overfitting in this context is Schuster, Lowe, and Platt (2016), who sug‑

gest a general rule that the number of observations per parameter should be between 10 and

20. When overfitting occurs, the variance of the estimated treatment effect increases because

noise amplifies the magnitude of the coefficients, resulting in a small bias towards 0 or 1 be‑

cause of properties of the logit function. Specifically, when using (non‑augmented) propen‑

sity scoreweighting, the estimate of the treatment effectwill have high variance as propensity

scores close to 0 or 1 receive artificially inflated weighting.

Lee, Lessler, and Stuart (2010) simulates a comparison of machine learningmethods for propensity

score prediction and finds that an overfit CART model performs better than a pruned CART model

in terms of balance and treatment effect estimation bias. While not conclusive, this suggests that

conventionally overfit trees are appropriate and potentially beneficial for propensity score mod‑

elling.
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If overfitting was to occur, this could be interpreted as balance between groups getting worse de‑

creases with a higher model complexity. Although various software packages use a stopping rule

to prevent this. As conventional advice states, creating balance should be the aim of estimating

propensity scores with overfitting being a minor concern.

2.3 Comparison of Machine Learning Algorithms: Simulation Results

A small body of simulation studies benchmarks probability machines for predicting propensity

scores (see McCaffrey, Ridgeway, and Morral 2004; Setoguchi et al. 2008; Lee, Lessler, and Stuart

2010; Cannas and Arpino 2019; Tu 2019; Goller et al. 2020; Ferri‑García and Del Mar Rueda 2020).

Although these studies tackle the same problem, differences in simulation design and model

implementation lead to a diverse range of perspectives on this issue. This variety reflects the

complexity of the propensity score prediction.

Tu (2019) compares logistic regression, boosting, bagging, and random forests across different sam‑

ple sizes, conditions of linearity and additivity, and treatment effect strengths. Boosting achieves

the lowest bias ATE estimate in most scenarios and the lowest mean square error in all scenarios.

Bagging ensembles and random forests perform poorly in both ATE estimate bias and MSE. The

author notes that poor performance in bagging ensembles is likely due to correlated trees in the en‑

semble, leading to divergence bias. Random forests perform significantly better than bagging but

both methods performed worse than boosting or logistic regression.

Despite poor theoretical properties as a probability machine, Lee, Lessler, and Stuart (2010) find

that bagging results in the lowest standard error acrossmany datasets.3 This result is not surprising

given that the bagging ensembles are trained on bootstrapped datasets, leading to lower variance

3In this case, the standard error is the dispersion of the standardisedmean difference (effect size) across 1000 simulated
datasets.
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and standard error. Although, this advantage is not likely of practical interest given that the small

performance gain in standard error is at the expense of a considerable increase of bias.

Additionally, Lee, Lessler, and Stuart (2010) finds that logistic regression performs well in simple

data structures with comparable bias to boosting and random forest, but with larger standard er‑

rors. In complex data structures, boosting shows lowbias and outperforms logistic regressionwhile

maintaining low standard errors. Consequently, the study concludes that boosted CART achieves

the best 95% coverage in all simulation scenarios, with 98.6% coverage.4

Cannas and Arpino (2019) also undergo a simulation study to assess machine learningmethods for

propensity score prediction. They compare logistic regression, CART, bagging ensembles, random

forest, boosting, neural networks, and naive bayes and find that random forest, neural networks,

and logistic regression perform the best. Notably, the simulation design only performs hyperparam‑

eter tuning for CART, random forest, and neural networks but not either of their boosting implemen‑

tation.5 This is a weakness of their study design and thus their findingsmay bemore informative of

the relative performance of tuned versus untunedmodels. Although, the finding that random forest

performs well when tuned is significant.

Goller et al. (2020) adds diversity to the simulation study literature by exploring an economics con‑

text, experimenting with imbalances between treated and control observations, and incorporating

LASSO and probit models.6 7 Probit regression achieves the best covariate balance, with LASSO

also performing well. In contrast, the random forest model performs poorly, showing imbalance
4In this context, the coverage is the proportion of times that the true treatment effect is within the 95% confidence
interval across the number of simulations. This author implements 1000 simulations of each scenario.

5Cannas and Arpino (2019) provide a replication package for their simulation study online and their hyperparameter
tuning is process transparent. The authors fit two GBMs using the twang and gbm package in R. The hyperparameter
values provided to these untunedboostingmodels are contrary to heuristics andmay leadboosting toperformpoorly
regardless of theoretical benefits discussed in Section 2.2.3.

6Goller et al. (2020) calculates thebias of the treatment effect using the averageof the estimates from logistic regression,
random forest, and LASSOmodels as the true treatment effect. Thus, the covariate balance table offers a clearer view
of eachmethod’s performance.

7Tibshirani (1996) introduces LASSO regularization, short for Least Absolute Shrinkage and Selection Operator, is a tech‑
nique used in linear regression to prevent overfitting by penalising the absolute size of the coefficients. It adds a
penalty term to the ordinary least squares objective function, meaning that some coefficients may “shrink” to zero.
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statistics with several orders ofmagnitude higher than those of probit or LASSO. To perform feature

selection, a probit model with many interactions and polynomial terms is specified, and a LASSO

penalty shrinks covariate coefficients to zero. Probit regression stands out for its superior covariate

balance, while LASSO also delivers satisfactory results. The random forest model underperforms

with significantly higher imbalance statistics compared to probit and LASSO.

Based on a review of the literature, the findings can be distilled into five important points:

1. Probability machines can predict propensity scores with excellent performance and their im‑

plementation should be considered in most scenarios. Although, a logistic regression ap‑

proach may be preferred because of simplicity while still providing adequate performance

in simple data structures.

2. In cases of non‑linearity or non‑additivity in the data, probabilitymachines often achieve bet‑

ter covariate balance and lower bias of treatment effect estimates than logistic regression.

This is significant as propensity scores are frequently used in observational studies with com‑

plex data structures (Rosenbaum and Rubin 1983).

3. Bagging ensembles perform poorly, a finding replicated across multiple studies.

4. Random forests can perform excellently when hyperparameters are satisfactorily tuned.

5. Further research should consider parametricmethodswith LASSO, Ridge, or ElasticNet penal‑

ties to assist in feature selection. Simulation study evidence for predicting propensity scores

is limited despite attractive properties of these methods.

6. A tuned GBM stands out with strong theoretical support, excellent simulation performance,

and superior software implementation anddocumentation. Specifically, this GBMwill use the

Bernoulli deviance as a loss function due to theoretical benefits. Implementations of GBMs

such as AdaBoost.M1 have no simulation study evidence.
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7. A good practical approach seems to be a trial‑and‑error approach of fitting multiple model

specifications, then considering covariate balance for eachmodel.

2.4 Code Provided for PDF Output

load(file = "globals.RData")

# Create Figure 2.1

library(randomForest)

library(patchwork)

library(ggplot2)

library(ragg)

set.seed(88)

nsw_formula <- as.formula(as.factor(treat) ~ age + educ + re75 +

black + hisp + degree + marr)

logit_preds <- glm(nsw_formula, data = nsw_data,

family = binomial())$fitted.values

rf_mtry1_preds <- predict(randomForest(nsw_formula,

mtry = 1, data = nsw_data),

newdata = nsw_data, type = "prob")[, 2]

bagging_model <- randomForest(nsw_formula, mtry = 7, importance = TRUE,

data = nsw_data)
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bagged_preds <- predict(bagging_model, newdata = nsw_data, type = "prob")[, 2]

plot_pmachines <- function(pscores, plot_subtitle) {

ggplot(nsw_data, aes(x = pscores, fill = factor(treat))) +

geom_density(alpha = 0.6, linewidth = 0.6) +

scale_fill_manual(values = c("#e5e5e5", "#2780e3"),

labels = c("Control", "Participant")) +

labs(subtitle = plot_subtitle, x = "Propensity Scores", y = "Density",

fill = "Group:") +

scale_x_continuous(expand = expansion(0), limits = c(0,1)) +

scale_y_continuous(expand = expansion(0), limits = c(0,10)) +

custom_ggplot_theme

}

p1 <- plot_pmachines(logit_preds, "Logistic Regression") + xlab(NULL) +

theme(legend.position = "none") +

annotate(geom = "curve", x = 0.6, y = 5, xend = 0.42, yend = 0,

curvature = .3, arrow = arrow(length = unit(2, "mm"))) +

annotate(geom = "text", x = 0.6, y = 5, label = "True Probability",

hjust = "left", color = "#333333", size = 3)

p2 <- plot_pmachines(rf_mtry1_preds, "Random Forest (mtry = 1)") + xlab(NULL) +

theme(legend.position = "none")

p3 <- plot_pmachines(bagged_preds, "Bagging (Bootstrap Aggregation)")
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p1 / p2 / p3 + plot_annotation(

title = "Density Plots of Propensity Scores for NSW Data",

theme = custom_ggplot_theme)

# Create Figure 2.2

library(ggplot2)

library(tidyverse)

imp <- as.data.frame(importance(bagging_model))

imp <- cbind(vars = rownames(imp), imp)

imp <- imp[order(imp$MeanDecreaseGini),]

imp$vars <- factor(imp$vars, levels = unique(imp$vars))

imp %>%

pivot_longer(cols = matches("Mean")) %>%

ggplot(aes(y = vars, x = value, fill = name)) +

geom_bar(stat = "identity", width = 0.8, show.legend = TRUE,

position = position_dodge(width = 0.8), color = "black",

linewidth = 0.6) +

facet_grid(~ factor(name,

levels = c("MeanDecreaseGini", "MeanDecreaseAccuracy")),

scales = "free_x") +

scale_fill_manual(values = c("#e5e5e5", "#2780e3")) +

scale_x_continuous(expand = expansion(c(0, 0.04))) +

labs(title = "Variable Importance",

x = "% Decrease if Variable is Omitted from Model", y = "Variable Name"
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) + custom_ggplot_theme + theme(legend.position = "none")

# Create Figure 2.3

set.seed(88)

library(gbm)

nsw_gbm <- gbm(treat ~ age + educ + re75 + black + hisp + degree +

marr, distribution = "bernoulli", data = nsw_data, n.trees = 10000,

shrinkage = 0.0001)

boosted_preds <- predict(nsw_gbm, type = "response")

plot_pmachines(boosted_preds, "Gradient Boosting Machine") +

scale_y_continuous(expand = expansion(0), limits = c(0, 25)) +

annotate(geom = "curve", x = 0.6, y = 5, xend = 0.42, yend = 0,

curvature = .3, arrow = arrow(length = unit(2, "mm"))) +

annotate(geom = "text", x = 0.6, y = 5, label = "True Probability",

hjust = "left", color = "#333333", size = 3) + labs(

title = "Density Plots of Propensity Scores for NSW Data") +

custom_ggplot_theme

save.image(file = "globals.RData")
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3 Tutorial: Implimentation, Workflow, and

Example with WeightIt andgbm in R

Based on Friedman (2001), the gbm package implements a Generalized Boosting Machine. Here, the

“generalized” is because the package provides generalisations of the boosting framework to other

distributions such as Bernoulli, Poisson, and Cox‑proportional hazards partial likelihood of class

probability predictions. Although this implementation very closely follows Friedman (2001) who

introduced the gradient boosting machine. gbm also supports stochastic gradient boosting, which

performs random bootstrap sampling for each tree using the bag.fraction parameter.

To fit and tune a GBM for propensity scores, wrapper packages facilitate optimal hyperparameter

tuning for covariate balance. An effective approach involves fitting the model and computing bal‑

ance statistics at each hyperparameter combination. Since the gbm package does not support this

type of tuning, a wrapper package like WeightIt is necessary. WeightIt allows for hyperparame‑

ter tuning based on covariate balance and inverse propensity weighting (IPW). WeightIt supports

hyperparameter turning of shrinkage, interaction.depth, and n.trees. Once the best model

is identified, propensity scores are predicted inside WeightIt. These can be used inside WeightIt

to perform IPW or extracted for other implementations. WeightIt also supports an offset meaning

that logistic regression predictions are supplied to the GBM package.
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Multiple sources, including package documentation and other research, suggest values for hyper‑

parameters (see McCaffrey, Ridgeway, and Morral 2004; Ridgeway et al. 2024). A very low learning

rate, such as 0.01 or 0.0005, allows a smooth descent of the loss function. The model should in‑

clude a high number of trees, with 10, 000 or 20, 000 being a typical default value. While this may

seemexcessive, it is requiredwhena low learning rate is used. A grid searchprocess should consider

many options including a very high number of trees and even though the optimal model may con‑

tain fewer trees. While GBMs often use shallow trees like stumps, allowing a few splits per tree can

better model non‑linearity and additivity. The WeightIt default allows for 3 splits. Based on anec‑

dotal experience, 1 to 5 splits per tree is optimal, consistent with recommendations by McCaffrey,

Ridgeway, and Morral (2004).

Another package, twang, proves functionality to tune the number of trees, but there are no inbuilt

options for tuningof otherhyperparameters and soaccessorypackages suchascaretmustbeused.

Although twang has other useful functionalities which users may wish to implement.

3.1 Hyperparameter Tuning andWorkflow

The WeigthtIt package seems to have the best options for hyperparameter tuning and integration

with a package for assessing balance called cobalt. The best information for this package can be

found on this website or accessed with vignette("WeightIt") inside R after installation using

install.packages("WeightIt").

A workflow for hyperparameter tuning in WeightItmay be completed as follows:

1. Specify the criterion option ormeasure of balance, which specifies themeasure of the best

model. The available measures are any balancemeasure that cobalt can compute. A simple

option tochoosemaybe theaveragestandardisedmeandifference (SMD)acrossall covariates
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called sdm.mean or the smallest maximum SDM across covariates called sdm.max. It may be

worthwhile to complete the tuning process with different tuning criteria.

2. Set thenumber of trees high. Thepackagedefault isn.trees = 10000 for binary treatments,

but this may be too small depending on the learning rate. Typically, it is best to increase the

number of trees to ensure slow learners have the opportunity to reach their minimum crite‑

rion. There is nomodellingdownside to a larger number of trees other than computation time

as the model will predict propensity scores with a smaller n.tree if optimal.

3. Specify the grid search for the depth of the tree called interaction.depth and the learn‑

ing rate called shrinkage. These values can be specified using c() such as shrinkage =

c(0.0005, 0.001, 0.05, 0.1, 0.2, 0.3)oras integers suchasinteraction.depth =

1:5. These particular values are heuristically selected suggestionsof good starting values. Ad‑

ditionally, anoffset canbe consideredbyperforming a grid search acrossoffset = c(TRUE,

FALSE).1

4. The model is fit and a grid search is performed. The tune grid and balance statistics can be

retrieved with my_weightit_object$info$best.tune.

5. The best model should be inspected and to determine if the initial grid is appropriate.

If the selection of the best model is at the boundary of a grid search, then a new grid

should be created and step 3 and 4 are repeated. For example, if the initial fit is completed

with interaction.depth = 1:5 and the best fit is 5, then a new search can consider

interaction.depth = 3:7 so that the local area around 5 can be searched.

1In the context of gradient boosting machines (GBMs) or boosted logistic regression models, an offset refers to an ad‑
ditional term that is included in the model to account for a known effect or baseline value that should be factored
into the prediction, but is not estimated by the model itself. In gbm the offset is estimated using conventional logistic
regression.
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6. Experiment with bag.fraction, which means each tree will consider a drawn proportion of

observations equal to bag.fraction. Iteratively changing bag.fraction and assessing bal‑

ance at each value should be practical. Consider 0.5, 0.67, and 1.

7. Assess balance of covariates andmodel fit. Covariate balance can be assessedwith a balance

table such as bal.tab() or visualised using love.plot() from cobalt.

8. The tuned model is stated and reported to allow replicable results. Balance tables are pre‑

sented and discussed. Comparison to other methods of estimation if relevant.

9. Estimation and reporting of treatment effect.

3.2 Example: NSW Jobs Dataset Using R

For demonstration, propensity scores are estimated following theworkflowdiscussed in Section 3.1

to estimate inverse propensity weights (IPW). The NSW jobs dataset arises from a randomised set‑

ting as described in Appendix A. Randomisation should eliminate structural differences between

groups, but Rosenbaum and Rubin (1983) notes that randomisation only addresses structural bal‑

ance and does not account for chance imbalance. To address this, propensity scores can mitigate

any remaining chance imbalance, providing a more accurate estimate of the treatment effect. This

example will include the fitting process of a GBM using WeightIt and a logistic regression model

using glm(). Additionally, balance statistics will be computed leading to a robust estimate of the

treatment effect.

Note 9: Inverse Probability of Treatment Weighting

Inverse probability of treatment weighting or inverse propensity weighting (IPW) adjusts for

confounding in observational data byweighting individuals basedon the inverse of their prob‑
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ability of receiving the treatment they actually got. This method creates a pseudo‑population

where treatment assignment is independent of observed covariates, similar to a randomised

controlled trial. In this re‑weighted population, the treatment and control groups should be

have covariatebalance, allowing for unbiasedestimationof treatment effects. Essentially, IPW

simulates random treatment assignment by rebalancing the sample, thereby eliminating con‑

founding and enabling more accurate causal inferences.

3.2.1 Step 1‑6: Model Fitting and Tuning

Theglm() functionwill fit a conventional propensity scoremodelwith logistic regression inR. Logis‑

tic regression is performed by specifying the family to be the binomial(). Recall the nsw_formula

is specified in Section 2.2.2.

nsw_logit_pmodel <- glm(nsw_formula, data = nsw_data,

family=binomial()) 1

nsw_logit_pscores <- nsw_logit_pmodel$fitted.values 2

1 Fits a logistic regression model using the glm() function specified to be a logistic model with

family=binomial() using the previously created nsw_formula.

2 Extracts the fitted values (propensity scores) from themodel.

The weightit() function from the WeightIt packagewill perform IPWand assign aweight to each

observation such that the pseudo‑population should exhibit covariate balance. The model object

will be called nsw_logit_weight.
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library(WeightIt)

nsw_logit_weight <- weightit(nsw_formula, data = nsw_data, 1

ps = nsw_logit_pscores, 2

estimand = "ATE") 3

1 Specifies the formula and data.

2 Providesweightit()with thepropensity scores from the logistic regression function. Note that

inpractice this canbecompletedwithin theweightit() functionwithmethod = "glm". The

separate estimation of the propensity scores is for illustrative purposes.

3 Specifies the estimand as the average treatment effect or ATE. For the purposes of demonstra‑

tion, this is an arbitrary choice.

A GBMmodel for propensity scores can be specified using method = "gbm" inside the weightit()

function. To ensure consistent results, running set.seed(88)will ensure each tree uses the same

seed if bag.fraction less than 1. Themodel is fit using the heuristically suggested starting values.

Note that thismodelmay take approximately 30 second to fit as a grid search procedure is computa‑

tionally intensive. Additionally, the best tuning specification is printed to assess if the initial tuning

grid is appropriate.

set.seed(88)

nsw_boosted_weight <- weightit(nsw_formula, data = nsw_data, 1

method = "gbm", 2

estimand = "ATE",

shrinkage = c(0.0005, 0.001, 0.05,

0.1, 0.2, 0.3), 3

interaction.depth = 1:5,

bag.fraction = 1, 4
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offset = c(TRUE, FALSE),

criterion = "smd.mean", 5

n.trees = 10000)

print(nsw_boosted_weight$info$best.tune) 6

1 Specifies the formula and data.

2 Specifies the propensity score prediction method to be a GBM and the estimand to the ATE.

3 Performs a grid search over these values of the learning rate and depth of tree.

4 Requires the model to use every observation in every tree, meaning the model will not perform

stochastic gradient boosting. The function will will fit an offset and level GBM and select the

specification with the best balance.

5 Defines the optimisation criteria to be the tune with the lowest average standardised mean dif‑

ference (SMD). Additionally, the number of trees will be 10000 which is the package default.

6 Prints the tune details of the model with the best covariate balance.

shrinkage interaction.depth distribution use.offset best.smd.mean best.tree

6 0.3 1 bernoulli FALSE 0.02253485 2392

The best balance across all tuning combinations yields an average SMD of 0.023 showing strong

balance compared to the 0.1 threshold. Note averages can conceal extremes and a low average

SMD does not mean all variables are balanced. A full balance table is presented in Section 3.2.2

accompanying a discussion of balance.

The bestmachine has a learning rate of 0.3 and contains 2392decision stumps (treeswith a depth of

1). The learning rate is on the boundary of the initial tuning grid showing that the tuning grid should
be re‑specified to include values near to 0.3. A reduction in the depth of tree and number of trees

will reduce computation time.
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The new tune grid will consider shrinkage = c(0.25, 0.3, 0.35, 0.4, 0.45, 0.5) as this

allows the GBM to consider values between 0.2 and 0.3 and above 0.3 which were missing in the

previous grid.

shrinkage interaction.depth distribution use.offset best.smd.mean best.tree

11 0.45 2 bernoulli FALSE 0.01965492 95

Comparing the two iterations, there is a reduction from 0.022 to 0.02 in the SMD. The optimal tuning

values are towards the centre of the tuning grid, implying that an adequate search of the local area

has been completed. The best machine has a learning rate of 0.45, a tree depth of 2, and 95 trees.

The learning rate is higher than expected, but this also explains why fewer trees are optimal.

Plotting the relationship between the number of trees and the average SMD is informative for the

behaviour of themachine. Additionally, Figure 3.1 shows the optimal number of trees is highly vari‑

able. If the learning rate is set to shrinkage = 0.05, then the best balance is not achieved until

near to 20, 000 trees.

For the optimal machine fit, finding that balance worsens as the number of trees increases is just

as informative as knowing the correct number of trees. Provided sufficient computational perfor‑

mance, a wide grid search is beneficial in the long run to ensure that each model specification

reaches the best balance possible.
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Figure 3.1: Relatoinshipbetweenstandardisedmeandifference, numberof interations, and learning
rate in a GBM model. Please note the difference in horozontal scale between the two
learning rates. The model is fit using weightit from the WeightIt package.
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3.2.2 Step 7 and 8: Assessing Balance

The Importance of Discussing Balance

Assessing balance is crucial because it ensures that the treated and control groups are com‑

parable on observed covariates. This comparability is essential for reducing confounding and

making valid causal inferences. Without proper balance, differences in outcomes between

the groups could be due to pre‑existing differences rather than the treatment itself. Balance

assessment helps to verify that the propensity scoremodel has effectively adjusted for covari‑

ates, creating a pseudo‑randomised scenario. This step is vital for the reliability and validity

of the study’s conclusions. King and Nielsen (2019) notes that many papers that implement

propensity score methods do not assess or report a balance in their studies, which can under‑

mine the credibility of the research process and make it hard for readers to understand why

results are robust.

A good resource of information for assessing balance is documentation from the cobalt pack‑

age, which can be viewed by running vignette(“cobalt”, package = “cobalt”) in R.

As stated, cobalt provides very good integrationwith other related packages such as WeightIt for

IPW and MatchIt for propensity score matching. Balance tables are created using bal.tab().

library(cobalt) 1

nsw_logit_btab <- bal.tab(nsw_logit_weight, 2

data = nsw_data,

stats = c("mean.diffs","variance.ratios"), 3

binary = "std", continuous = "std",

thresholds = c(mean.diffs = 0.1)) 4

nsw_logit_btab <- nsw_logit_btab$Balance[-1,-c(2,3)] 5
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1 Loads thecobaltpackage. Thisassumes thepackage isalready installedwithinstall.packages("cobalt")

2 Uses the bal.tab() fucntion to create balance statistics for the previously created

nsw_logit_weightmodel.

3 Specifies the calculationof standardisedmeandifferences and variance ratios for each covariate.

The mean differences will be standardised for binary and continuous variables.

4 Sets a threshold of balance to be 0.1 to determine if a covariate is balanced.

5 Extracts the balance table of the nsw_logit_btab object and removes excessive columns. This

is only completed for ease of visualisation and is not typically required.

Additionally, bal.tab()will create balance tables for theGBMmethod’s IPWs and the rawdata. For

presentation, dplyr combines each of the individual balance tables for presentation using kable

and kableExtra.

Table 3.1 shows that both logistic regression and the GBM have reduced imbalance. The raw data

exhibits imbalance across age, years of education, if someone is gispanic, and if someone has a

bachelors degree. Imbalanced datasets leads to biased treatment effect estimation so the estimate

of the treatment effect in the raw data may be biased. In this example, logistic regression appears

to achieve the best covariate balance although GBM achieves slightly better variance ratios.

3.2.3 Step 9: Results

Finally, the treatment effect can be estimated using lm_weightit() from the WeightIt package

and avg_comparisons() from the marginaleffects package. Note that the outcome variable is

re78which is real income in 1978meaning that the income is adjusted for inflation. Previously, the

treatment indicator was the outcome variable because the propensity scores are a prediction of the

treatment indicator.

54



Table 3.1: Standardisedmeandifference (ameasureof balance) acrossdifferent covariates in theNa‑
tional Supported Work data. The values are categorised for different propenensity score
methods allowing a comparison. Balance tables are computedusingbal.tab() from the
cobalt package.

Variable Type SMD Balanced Variance Ratio

Raw Data
Age Contin. 0.1066 No 1.0278

Educa‑
tion

Contin. 0.1281 No 1.5513

Income
1975

Contin. 0.0824 Yes 1.0763

Black Binary 0.0449 Yes NA

Hispanic
Binary ‑0.2040 No NA

Degree Binary 0.2783 No NA

Married
Binary 0.0902 Yes NA

Logistic Regression and IPTW
Age Contin. ‑0.0001 Yes 0.9809

Educa‑
tion

Contin. 0.0012 Yes 1.2725

Income
1975

Contin. 0.0081 Yes 0.7971

Black Binary 0.0006 Yes NA

Hispanic
Binary ‑0.0031 Yes NA

Degree Binary 0.0009 Yes NA

Married
Binary 0.0045 Yes NA

Boosting Machine and IPTW
Age Contin. ‑0.0065 Yes 0.9086

Educa‑
tion

Contin. 0.0220 Yes 1.1391

Income
1975

Contin. ‑0.0152 Yes 1.0134

Black Binary 0.0028 Yes NA

Hispanic
Binary ‑0.0547 Yes NA

Degree Binary 0.0481 Yes NA

Married
Binary 0.0085 Yes NA
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nsw_boosted_lm <- lm_weightit(re78 ~ treat * (age + educ + re75 + black + 1

hisp + degree + marr), data = nsw_data,

weights = nsw_boosted_weight$weights) 2

library(marginaleffects) 3

nsw_boosted_result <- avg_comparisons(nsw_boosted_lm, variables = "treat")

1 Uses lm_weightit() to compute pseudo‑outcomes. The formula here specifies an interaction

between the treatment and all other variables. Note that * indicates multiplication in R.

2 Specifies theweights from thensw_boosted_weightobject created earlier by theweightit()

function. Intuitively, this is performing linear regression using the pseudo‑population, where

the pseudo‑population is created weighting the data by nsw_boosted_weight$weights.

3 Estimates a comparisonbetween thepotential outcomes aswell as standard errors for inference.

Additionally, this process is followed for the logistic regression propensity scores and the results are

combined in to a table for comparison.

Table 3.2: Comparison of estimates of the average treatment for the National SupportedWork data.

Estimate SE P.Value Lower.CI Upper.CI

Logistic Regression 1610.786 668.4870 0.0160 300.5756 2920.997

GBM 1609.947 669.4201 0.0162 297.9081 2921.987

Table 3.2 shows that both estimates of the treatment effect are nearly identical at $1610 with logis‑

tic regression inferring a $0.86 larger treatment effect. Additionally, these results are statistically

significant at the 5% level with nearly identical standard errors.
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3.3 Code Provided for PDF Output

load(file = "globals.RData")

library(WeightIt)

nsw_logit_weight <- weightit(nsw_formula, data = nsw_data, 1

ps = nsw_logit_pscores, 2

estimand = "ATE") 3

# Additional weightit() GBM grid

set.seed(88)

nsw_boosted_weight2 <- weightit(nsw_formula, data = nsw_data,

method="gbm",

estimand = "ATE",

shrinkage= c(0.25, 0.3, 0.35, 0.4, 0.45, 0.5),

interaction.depth = 1:3,

bag.fraction = 1,

offset = c(TRUE, FALSE),

criterion = "smd.mean",

n.trees = 5000)

print(nsw_boosted_weight2$info$best.tune)

# Create Figure 3.1

library(ggplot2)

library(patchwork)

low_shrinkage <- weightit(nsw_formula, data = nsw_data,

method = "gbm",

estimand = "ATE",
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shrinkage = 0.05,

interaction.depth = 1,

offset = c(TRUE, FALSE),

criterion = "smd.mean",

n.trees = 40000)

optimal_boost_plot <- ggplot(nsw_boosted_weight2$info$tree.val,

aes(x = tree, y = smd.mean)) +

geom_line(linewidth = 1, color = "#2780e3") +

labs(subtitle = "Optimal Tune",

x = "Number of Iterations",

y = "Average Standardised Mean Difference") +

xlim(0,500) + custom_ggplot_theme

lowshrinkage_boost_plot <- ggplot(low_shrinkage$info$tree.val,

aes(x = tree, y = smd.mean)) +

geom_line(linewidth = 1, color = "#2780e3") +

labs(subtitle = "Low Learning Rate (shrinkage = 0.05)",

x = "Number of Iterations",

y = NULL) +

annotate(geom = "curve", x = 30000, y = 0.05,

xend = low_shrinkage$info$best.tree, yend = 0.0231,

curvature = 0.3, arrow = arrow(length = unit(2, "mm"))) +

annotate(geom = "text", x = 31000, y = 0.05, label = "Minimum",

hjust = "left", color = "#333333", size = 3) + custom_ggplot_theme
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optimal_boost_plot + lowshrinkage_boost_plot + plot_annotation(

title = 'Number of Tree Iterations and Balance', theme = custom_ggplot_theme)

# Create balance tables

nsw_boosted_btab <- bal.tab(nsw_boosted_weight,

data = nsw_data,

stats = c("mean.diffs","variance.ratios"),

binary = "std", continuous = "std",

thresholds = c(mean.diffs = 0.1))

nsw_raw_btab <- bal.tab(nsw_formula,

data = nsw_data,

stats = c("mean.diffs","variance.ratios"),

binary = "std", continuous = "std",

thresholds = c(mean.diffs = 0.1),

s.d.denom = "treated")

nsw_boosted_btab <- nsw_boosted_btab$Balance[-1, -c(2, 3)]

nsw_raw_btab <- nsw_raw_btab$Balance[-c(5, 6)]

# Create Table 3.1

library(tidyverse)

library(kableExtra)

collabels <- c("Type", "SMD", "Balanced", "Variance Ratio","Method")

rowlabels <- c("Age", "Education", "Income 1975","Black",

"Hispanic", "Degree", "Married")
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nsw_raw_btab$method <- "Raw Data"

nsw_logit_btab$method <- "IPTW: Logistic Regression"

nsw_boosted_btab$method <- "IPTW: Boosting"

combined_btab <- bind_rows(setNames(nsw_raw_btab,collabels),

setNames(nsw_logit_btab,collabels),

setNames(nsw_boosted_btab,collabels))

combined_btab$Variable <- rep(rowlabels,3)

combined_btab <- combined_btab[c(6,1,2,3,4,5)]

rownames(combined_btab) <- NULL

combined_btab$Balanced <- ifelse(

combined_btab$Balanced == "Not Balanced, >0.1", "No", "Yes")

kbl(combined_btab[-6], digits = 4, booktabs = TRUE, align = "c",

font_size = 10) %>%

kable_styling(full_width = T) %>%

column_spec(2:5, bold = F, width = "3cm") %>%

pack_rows("Raw Data", 1, 7, label_row_css = "text-align: center;") %>%

pack_rows("Logistic Regression and IPTW", 8, 14,

label_row_css = "text-align: center;") %>%

pack_rows("Boosting Machine and IPTW", 15, 21,
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label_row_css = "text-align: center;")

# Create Table 3.2

nsw_logit_lm <- lm_weightit(re78~treat*(age + educ +

re75 + black + hisp +

degree + marr), data = nsw_data,

weights = nsw_logit_weight$weights)

nsw_logit_result <- avg_comparisons(nsw_logit_lm, variables = "treat")

nsw_comparisons_tab <- rbind(extract_comparison_results(nsw_logit_result),

extract_comparison_results(nsw_boosted_result))

rownames(nsw_comparisons_tab) <- c("Logistic Regression", "GBM")

knitr::kable(nsw_comparisons_tab, digits = 4)

save.image(file = "globals.RData")

61



4 Replication Case Study

The replication study focuses on a paper titled The Impact of Coffee Certification on Small‑Scale Pro‑

ducers’ Livelihoods: A Case Study from the JimmaZone, Ethiopiapublished in Agricultural Economics

(2012) by Pradyot Ranjan Jena, Bezawit Beyene Chichaibelu, Till Stellmacher, andUlrike Grote. This

paper explores the effects of fair trade coffee certification schemes on the economic wellbeing of

small‑scale coffee farmers in Ethiopia, particularly examining whether these schemes contribute to

poverty reduction and improved livelihoods among smallholders.

The central theme of the paper is the evaluation of certification schemes, such as Fairtrade and

organic certification, as tools for enhancing the income stability and economic resilience of small‑

scale coffee producers. Certification is seen as a potential tool for economic growth and and en‑

vironmental sustainability and so it is important to understand the impact on small‑scale farmers.

Table 4.1 summarises the variables used in the propensity score model.

Table 4.1: List of covaraites in Jena et al. (2012). Per capita income is the outcome and certification
is the treatment. Other covariates are used in the propensity score model.

Codename Description

Per Capita Income percapinc_day Average income earned per person within a

farming household
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Table 4.1: List of covaraites in Jena et al. (2012). Per capita income is the outcome and certification
is the treatment. Other covariates are used in the propensity score model.

Codename Description

Certification (Treatment/

Control)

certified If the farming household is certified (1) or

otherwise (0)

Household Age age_hh Age of the head of the household in years

Squared Household Age agesq Age of the head of the household squared

Gender gender Gender of the head of household (male = 1 and

female = 0)

Dependency Ratio depratio Ratio of adult to childern in household (14 years

or less)

Education Level edu Education of the head of household in years

Years of Coffee Production experience Years of experience in coffee farming

Log Total Land logtotal_land Logarithm of total land size in hectares

Access to Credit access_creditHousehold has access to credit (yes = 1, otherwise

= 0)

Bad Weather badweat If the household experienced floods/droughts in

2008–2009

Non‑farm Income Access nf_income If the household has access to nonfarm income

Jena et al. (2012) define livelihood as a combination of per capita income, total income, per capita

consumption, andyieldperhectare. For simplicity, this replicationwill onlyuseper capita incomeas

a dependent variable. Thismeasure is selected as per capita income is a directmeasurement of the

income of those potentially impacted by certification. Additionally, the replication uses the same

variables as the original paper so any difference in estimates or covariate balance can be attributed

to the propensity score model.

63



Randomisation into certified and uncertified is not possible and it is likely that farmers who seek

certification are different than farmers who don’t. Thus, there is selection bias leading to structural

differences between groups so a contrast in means between the certified (treated) and uncertified

(control) farmers would be biased. Propensity scores are used to create covariate balance and re‑

duce bias of the estimated treatment effect. The paper did not assess the balance of covariates.

However, this provides a good opportunity to assess covariate balance in the initial paper and the

repeat the analysis using a machine learning propensity model.

4.1 Replication of Original Results

Jena et al. (2012) provides a replication package including Stata code that uses Stata’s psmatch2

package to perform nearest neighbourmatchingwith replacement and common support trimming.

Common support trimming means that any observations outside the commonly overlapping are

are discarded. The results of the paper are be fully replicated using the MatchIt package inside

R.

Table 4.2: Replication of results in Jena et al. (2012). Note a slight difference in standard errorwhich
should be 1.1 as the MatchItSE package uses a trivially different method than psmatch2
in Stata (see Abadie and Imbens 2006). Matching is performed by matchit() from the
MatchIt package.

Estimate SE P.Value Lower.CI Upper.CI

Replicated Result ‑0.1538 0.9898 0.835 ‑1.6009 1.2934

Table 4.2 shows the replicated result obtained by Jena et al. (2012). The intriguing finding of the

paper is that the average treatment effect on the treated (ATT) is negative. That is, of the farmers

that become certified, their per capita income is expected to decrease by $0.15 per day. Intuition

and proponents of certification schemes suggest that certification leads to an increase of income. If
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certification negatively impacts income, it would call into question a significant effort to engage in

certification and fair trade practices.

Jena et al. (2012) does not perform any discussion or consideration of balance in their paper and so

it is unclear if propensity score matching results in covariate balance. The cobalt package creates

balance tables using bal.tab() and a visualisation using love.plot().

Table 4.3: The standardised mean difference (SMD) for each covariate in Jena et al. (2012) using a
logistic regression propensity model and propensity score matching. Across each of the
covariates, a balance threshold is set at 0.1 to indicate if a covariate is balanced. Binary
and continuous variables are both standardised over the treatment group. SMDs are com‑
puted using bal.tab() from the cobalt package.

Type Diff.Adj M.Threshold V.Ratio.Adj

Household Age Contin. ‑0.2723 No 1.0728

Squared Household Age Contin. ‑0.2552 No 1.1430

Non‑farm Income Access Binary 0.3005 No NA

Log Total Land Contin. 0.2597 No 1.2969

Dependency Ratio Contin. ‑0.3996 No 0.9789

Bad Weather Binary 0.2016 No NA

Education Level Contin. 0.2443 No 1.0338

Gender Binary ‑0.1324 No NA

Years of Coffee Production Contin. ‑0.3400 No 0.9111

Access to Credit Binary 0.1949 No NA

Table4.3andFigure4.1 showthatpropensity scorematchinghasobtainedverypoorbalance. Based

on the 0.10 rule discussed in Section 2.1.1, not a single variable is balanced and so the estimate of

the treatment effect is likely to be biased by structural differences between control and certified.

65



Figure 4.1: A visual representation of Table 4.3 called a love plot. Additionally, the unadjusted (raw
data) SMDs are displayed for comparison. Variables are ordered by the SMD in the unad‑
justed data. Plot is created using love.plot() from the cobalt package.
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Four key variables: age, gender, education, and access to credit all exhibit poor balance. These vari‑

ables are strong confounders in theory and so emphasising balance in these variables is critical to

making a robust causal inference. Perhaps there is gender or age discrimination in the certification

process. Perhaps, those with lesser education may struggle to obtain certification. Perhaps those

who have less access to credit are unable to afford to become certified. Moving forward, these vari‑

ables must exhibit better covariate balance to make a robust conclusion.

Figure 4.2 shows the effect of common support trimming. Table 4.4 shows 34 total observations

are dropped of which 33 are treated and 1 are control. By dropping these observations, PSM avoids

making poor matches which should lead to better covariate balance. When observations are dis‑

carded, the estimand is no longer the ATT. Instead, it is refereed to as the average treatment effect

on the matched or ATM. There is a significant reduction in the effective sample size in the control

group from 82 to 21 individuals.

Table 4.4: The effective sample size resulting from theuse of propensity scorematching in Jena et al.
(2012). The effective sample size (ESS) is displayed in the unweighted (raw) andmatched
data as well as the number of disarded observations. Computed using bal.tab() from
the cobalt package.

Control Certified

All (ESS) 82 164

All (Unweighted) 82 164

Matched (ESS) 21 131

Matched (Unweighted) 42 131

Unmatched 39 0

Discarded 1 33

Overall, the propensity scorematching in Jena et al. (2012) is poor and results in unbalanced covari‑

ates and a loss of estimand.
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Figure 4.2: Density estimates of the propensity scores from Jena et al. (2012) using logistic regres‑
sion. Propensity score matching discards some observations as displayed by the dis‑
carded range on the left. A single observation is discarded on the right.
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4.2 Further Modelling

To improve the poor balance achieved by the Jena et al. (2012), there are two strategies to obtain

better balance. First, the propensity scores can be re‑estimated using machine learning to obtain

better calibratedpropensity scores. Second, inversepropensityweighting (IPW) canbeused instead

of propensity score matching (PSM). IPW should ensure that the sample size remains the same as

no observations are lost through a matching process. IPW should retain all observations and pre‑

serve the estimand as the ATT. Additionally, IPW is generally more efficient as a pseudo‑population

is based on precise weights compared tomatched observations based on approximate similarity.

Themachine learning propensity scores will be estimated using the WeightIt package in the same

process as Chapter 3. The model will be used using criterion = "smd.mean" for simplicity.

Note 10: Discussion of Tuning

Initially, a tuninggrid considering shrinkagevaluesof0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.3
wereconsideredusing10000 treeswithadepthbetween1and5. Thebest tuningperformance

was found with shrinkage of 0.2 and 13 trees which were three splits 2 deep.

As such my later tuning grids considered higher learning rates and a smaller num‑

ber of trees. The third and final iteration of the tuning grid searches between

0.15, 0.2125, 0.275, 0.3375, and 0.4, between 3 and 6 splits deep, uses an offset, and

randomly selects 67% of the data at each tree.

Of course there is no guarantee that the GBMmodel will perform the best and so a logistic model is

also fitted. An interesting comparison is between the SMDs in thematcheddata and in theweighted

sample. Any differences between the two samples relates to the difference between PSM and IPW

as the propensity scores are identical.
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4.3 Comparison of Methods

As before, cobalt creates a balance table and love plot.

There are three notable findings:

1. PSMhas performed very poorly relative to IPWevenwhenmatching dropps a significant num‑

ber of observations.

2. A GBMmodel has resulted in better covariate balance than logistic regression for most covari‑

ates. Using a 0.1 guidline for determining balance, logistic regression leaves 5 variables un‑

balanced and the GBM leaves 3 variables unbalanced. Additionally, the degree of unbalance

is larger for logistic regression.

3. Logistic regression has a satisfactory average SMD of 0.077. Boosting has an average SMD of

0.0498 which is excellent and narrowly meets a rigorous threshold of 0.05.

4. The covariate with the highest SMD is household age (0.245) in logistic regression and bad

weather (0.191) in the GBM.

4.4 Results

Now that satisfactory covariate balance is achieved, the treatment effect can be estimated under

logistic regression, the GBM, and then compared to the result in the paper. Note that the estimand

in the paper is intended to be the average treatment effect (ATT) but dropped observations mean

the actual treatment effect is the average treatment effect onmatched (ATM) individuals. In theory,

70



Table 4.5: Comparison of standardisedmeandifference (SMD) using different propensity scoremod‑
els. Across each of the covariates, a balance threshold is set at 0.1 to indicate if a covariate
is balanced. Binary and continuous variables are both standardised over the treatment
group. SMDs are computed using bal.tab() from the cobalt package.

Variable Type SMD Balance
Threshold

Variance
Ratio

Raw Data
Household Age Contin. 0.5634 No 0.8650

Squared Household Age Contin. 0.4912 No 1.0070
Non‑farm Income Access Binary ‑0.3928 No NA

Log Total Land Contin. ‑0.4048 No 0.5507
Dependency Ratio Contin. 0.0487 Yes 1.2371

Bad Weather Binary ‑0.2505 No NA
Education Level Contin. ‑0.0020 Yes 0.7272

Gender Binary ‑0.2750 No NA
Years of Coffee Production Contin. 0.4557 No 1.3621

Access to Credit Binary 0.5968 No NA
Logistic Regression and IPTW

Household Age Contin. 0.2449 No 0.9275
Squared Household Age Contin. 0.2277 No 1.0724
Non‑farm Income Access Binary 0.1701 No NA

Log Total Land Contin. ‑0.0923 Yes 0.8564
Dependency Ratio Contin. 0.1138 No 1.3877

Bad Weather Binary 0.1941 No NA
Education Level Contin. 0.0473 Yes 0.9217

Gender Binary ‑0.0465 Yes NA
Years of Coffee Production Contin. ‑0.0613 Yes 1.1125

Access to Credit Binary ‑0.0292 Yes NA
Boosting Machine with IPTW

Household Age Contin. 0.0669 Yes 1.2690
Squared Household Age Contin. 0.0989 Yes 1.4911
Non‑farm Income Access Binary 0.0579 Yes NA

Log Total Land Contin. ‑0.0284 Yes 0.8760
Dependency Ratio Contin. ‑0.0623 Yes 0.7660

Bad Weather Binary 0.1915 No NA
Education Level Contin. 0.1377 No 1.0735

Gender Binary ‑0.0816 Yes NA
Years of Coffee Production Contin. ‑0.0055 Yes 0.9704

Access to Credit Binary 0.1231 No NA
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Figure 4.3: Visual representation of Table 4.5 called a love plot and displays the standardised mean
difference (SMD) of covariates in Jena et al. (2012). Additionally, the unadjusted SMDs
are displayed for comparison. Variables are ordered by the SMD in the unadjusted data.
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better covariate balance should lead to a better estimate of the ATT so a comparison of the esti‑

mates is interesting. As in Section 3.2.3, the results will be completed using G‑computationwith the

lm_weightit() and avg_comparisons() functions.

Table 4.6: Estimates of the average treatment effect on the treated of certification on per capita in‑
come across different propensity score models and methods. Created using WeightIt,
MatchIt, and Cobalt packages.

Estimate SE P.Value Lower.CI Upper.CI

Rep. Result (Logistic with PSM) ‑0.1538 0.9898 0.8350 ‑1.6009 1.2934

Logistic Regression and IPW ‑1.5824 0.6072 0.0092 ‑2.7724 ‑0.3924

Generalized Boosting Machine and IPW ‑1.0187 0.5196 0.0499 ‑2.0372 ‑0.0003

Table 4.6 shows the estimates of the treatment effect across different methods. Recall that Jena

et al. (2012) estimate a an effect of −0.15 implying that daily income reduces by $0.15 if a farmer

becomes certified. This result is not statistically significant.

The IPW estimate is−1.58 implying that certification leads to a $1.58 decrease in daily income. This

coefficient is much larger than than the original paper by a magnitude of 10. Additionally, this esti‑
mate is statistically significant at the 1% level. TheGBMestimate is−1.02which predicts a decrease
in daily income by $1.02 when a farmer becomes certified. This finding is statistically significant at

the 5% level.

The most interesting result is that the estimates become evenmore negative. One may expect that

the result from a better balanced sample would become positive to align with theoretical motiva‑

tions for certification policies. Jena et al. (2012) presented two explanations for why certification

showsnopositive impact. First, theauthorsnote that thepricesofferedbycertified cooperatives are

not significantly different from those provided by non‑certified cooperatives. Second, a substantial

portion of coffee—about 75% is sold to private traders, who often pay higher prices to non‑certified
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farmers. Additionally, from qualitative interviews with farmers, the authors note that policies and

arrangementswithin different cooperatives exhibit heterogeneity so the impact of certificationmay

relate more to the structure of the cooperatives not merely being certified.

The reason for a large difference is twofold. First, better covariate balance by using a GBM and IPW

and should result in a more robust estimate. Of course better covariate balance alone does not

guarantee robust results but it is a step in the right direction. Second, weighting on the inverse

of the propensity scores instead of matching may significantly effect the estimate of the treatment

effect especially whenmatching results in dropped observations.

An additional answer is the impact of reverse causality. A general problem is causal inference is

that the direction of causality is not always known. While it is most intuitive that coffee certification

would impact income, it is also possible that per capita incomemight determine their certification.

Suppose that proponents of fair trade and certification are correct that certification will increase

income and benefit livelihood. If farmers are aware of this, then perhaps the lowest income farmers

are most likely to attempt to become certified to increase their income. Additionally, income likely

has a reverse causal relationship with many of the explanatory variables. For example, a higher

incomemay lead to better access to credit and the accumulation of land.

In summary, the analysis demonstrates that using more advanced methods like GBM and IPW not

only improves covariatebalancebut also leads to significantly larger andmorenegative estimatesof

the treatment effect compared to theoriginal study. This suggests that previous estimatesmayhave

underestimated thenegative impact of certificationonper capita income. The findingshighlight the

importance of methodological rigor in estimating causal effects and raise critical questions about

the broader implications of certification policies, particularly when considering potential reverse

causality and the varying structures of cooperatives. This analysis underscores the need for careful

interpretation of treatment effects, especially in policy‑relevant research.
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4.5 Code Provided for PDF Output

load(file = "globals.RData")

# Create Table 4.1

library(dplyr)

coffee_variable_summary <- data.frame(

Codename = c("`percapinc_day`", "`certified`", "`age_hh`",

"`agesq`", "`gender`", "`depratio`", "`edu`",

"`experience`", "`logtotal_land`", "`access_credit`",

"`badweat`", "`nf_income`"),

Description = c("Average income earned per person within a farming household",

"If the farming household is certified (1) or otherwise (0)",

"Age of the head of the household in years",

"Age of the head of the household squared",

"Gender of the head of household (male = 1 and female = 0)",

"Ratio of adult to childern in household (14 years or less)",

"Education of the head of household in years",

"Years of experience in coffee farming",

"Logarithm of total land size in hectares",

"Household has access to credit (yes = 1, otherwise = 0)",

"If the household experienced floods/droughts in 2008–2009",

"If the household has access to nonfarm income")

)

rownames(coffee_variable_summary) <- c("Per Capita Income",

"Certification (Treatment/ Control)",
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"Household Age", "Squared Household Age", "Gender",

"Dependency Ratio", "Education Level",

"Years of Coffee Production",

"Log Total Land", "Access to Credit",

"Bad Weather", "Non-farm Income Access")

knitr::kable(coffee_variable_summary, align="c")

# Create Table 4.2

library(MatchIt)

library(MatchItSE)

library(marginaleffects)

coffee_formula <- as.formula(certified ~ age_hh + agesq + nf_income +

depratio + logtotal_land + badweat + edu + gender +

experience + access_credit)

coffee_rep_pmodel <- matchit(coffee_formula, data = coffee_data,

distance = "glm", method = "nearest",

replace = TRUE, estimand = "ATT", discard = "both")

coffee_logit_md <- match.data(coffee_rep_pmodel)

coffee_rep_fit<- lm(percapinc_day ~ certified,

data = coffee_logit_md, weights = weights)

replicated_result <- avg_comparisons(coffee_rep_fit, variables = "certified",
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vcov = NULL,

newdata = subset(coffee_logit_md,

certified == 1),

wts = "weights")

ai_se <- abadie_imbens_se(obj = coffee_rep_pmodel,

Y = coffee_data$percapinc_day)

replicated_result_tbl <- extract_comparison_results(replicated_result)

replicated_result_tbl$SE <- ai_se

rownames(replicated_result_tbl) <- "Replicated Result"

knitr::kable(replicated_result_tbl, digits = 4)

# Create Table 4.3

library(cobalt)

coffee_rep_btab <- bal.tab(coffee_rep_pmodel,

data = coffee_data,

stats = c("mean.diffs","variance.ratios"),

binary = "std", continuous = "std",

thresholds = c(mean.diffs = 0.1),

s.d.denom = "treated")

coffee_rep_btab_ss <- coffee_rep_btab$Observations
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coffee_rep_btab <- coffee_rep_btab$Balance[-1,-c(2,3)]

rowlabels <- c(

"Household Age", "Squared Household Age", "Non-farm Income Access",

"Log Total Land", "Dependency Ratio", "Bad Weather",

"Education Level", "Gender", "Years of Coffee Production",

"Access to Credit")

colnames <- c("Variable","Type", "SMD", "Balance Threshold", "Variance Ratio")

rownames(coffee_rep_btab) <- rowlabels

coffee_rep_btab[,3] <- ifelse(

coffee_rep_btab[,3] >= "Not Balanced, >0.1", "No", "Yes")

knitr::kable(coffee_rep_btab, digits = 4, align = "c")

nobs_coffee_dropped <- sum(coffee_rep_pmodel$discarded, na.rm=TRUE)

coffee_data$discarded <- coffee_rep_pmodel$discarded

nobs_coffee_Tdropped <- nrow(subset(coffee_data,discarded==TRUE&certified==1))

nobs_coffee_Cdropped <- nrow(subset(coffee_data,discarded==TRUE&certified==0))

# Create Figure 4.1

library(ggplot2)

love.plot(coffee_formula, data = coffee_data,

weights = list(Replication = coffee_rep_pmodel),

sample.names = c("Unadjusted", "Replication"),

var.order = "unadjusted", binary = "std",
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abs = TRUE, colors = c("#333333", "#2780e3"),

shapes = c("circle filled", "circle filled"),

line = TRUE, thresholds = 0.1, s.d.denom = "treated") +

labs(title = "Variable Balance of Replication",

x = "Absolute Standardised Mean Differences", fill = "Method") +

scale_x_continuous(breaks = seq(0,0.6,length.out=7),

expand = expansion(c(0, 0.05))) +

custom_ggplot_theme

# Create Figure 4.2

discarded_scores <- coffee_rep_pmodel$distance[coffee_rep_pmodel$discarded]

discard_min <- min(discarded_scores, na.rm = TRUE)

discard_max <- max(discarded_scores, na.rm = TRUE)

ggplot(coffee_data, aes(x = coffee_rep_pmodel$distance,

fill = factor(certified))) +

geom_density(alpha = 0.6, linewidth = 0.6) +

scale_fill_manual(values = c("#e5e5e5", "#2780e3"),

labels = c("Control", "Certified")) +

labs(title = "Distribution of Propensity Scores in Replication",

x = "Propensity Scores", y = "Density", fill = "Group:") +

scale_x_continuous(expand = expansion(0), limits = c(0, 1)) +

scale_y_continuous(expand = expansion(0), limits = c(0, 3)) +

geom_vline(xintercept = discard_max, color = "#333333", linewidth = 0.8) +

annotate("rect", xmin = 0, xmax = discard_min, ymin = -Inf, ymax = Inf,

fill = "#333333", alpha = 0.2) +
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annotate("rect", xmin = discard_max, xmax = 1, ymin = -Inf, ymax = Inf,

fill = "#333333", alpha = 0.2) +

annotate("text", x = 0.02, y = 1.5,

label = "Discarded Range", angle = 90, vjust = 1.5, size = 4,

fontface = "bold", color = "#333333") +

custom_ggplot_theme

# Create Table 4.4

colnames(coffee_rep_btab_ss) <- c("Control", "Certified")

knitr::kable(coffee_rep_btab_ss, digits=0, align = "c")

# Perform IPW with a GBM

library(WeightIt)

library(cobalt)

set.seed(88)

coffee_boosted_weight <- weightit(coffee_formula, data = coffee_data,

method = "gbm", distribution = "bernoulli",

use.offset = T,

shrinkage = seq(0.15, 0.4, length.out = 5),

bag.fraction = 0.67,

interaction.depth = 3:6,

n.trees = 500,

criterion = "smd.mean",

estimand = "ATT")

coffee_boosted_btab <- bal.tab(coffee_boosted_weight, data = coffee_data,
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stats = c("mean.diffs", "variance.ratios"),

binary = "std", continuous = "std",

thresholds = c(mean.diffs = 0.1),

s.d.denom = "treated")

coffee_boosted_btab <- coffee_boosted_btab$Balance[-1, -c(2,3)]

# Perform IPW with Logistic Regression

coffee_logit_weight <- weightit(coffee_formula, data = coffee_data,

method= "glm", estimand = "ATT")

coffee_logit_btab <- bal.tab(coffee_logit_weight, data = coffee_data,

formula = coffee_formula,

stats = c("mean.diffs", "variance.ratios"),

binary = "std", continuous = "std",

thresholds = c(mean.diffs = 0.1),

s.d.denom = "treated")

coffee_logit_btab <- coffee_logit_btab$Balance[-1, -c(2,3)]

# Create Table 4.5

library("data.table")

library(cobalt)

library(kableExtra)

library(tidyverse)

coffee_raw_btab <- bal.tab(coffee_formula, data = coffee_data,

stats = c("mean.diffs","variance.ratios"),

binary = "std", continuous = "std",
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thresholds = c(mean.diffs = 0.1),

s.d.denom = "treated")

coffee_raw_btab <- coffee_raw_btab$Balance[,-c(5,6)]

coffee_combined_btab <- rbindlist(list(coffee_raw_btab,

coffee_logit_btab,

coffee_boosted_btab),

use.names = FALSE)

coffee_combined_btab$Variable <- rep(rowlabels, 3)

coffee_combined_btab <- coffee_combined_btab[, c(5, 1, 2, 3, 4)]

coffee_combined_btab[, 4] <- ifelse(

coffee_combined_btab[, 4] >= "Not Balanced, >0.1", "No", "Yes")

kbl(coffee_combined_btab, digits = 4, booktabs = TRUE, align = "c",

font_size = 10, col.names = colnames) %>%

kable_styling(full_width = TRUE) %>%

column_spec(2:5, bold = FALSE, width = "2cm") %>%

pack_rows("Raw Data", 1, 10, label_row_css = "text-align: center;") %>%

pack_rows("Logistic Regression and IPTW", 11, 20,

label_row_css = "text-align: center;") %>%

pack_rows("Boosting Machine with IPTW", 21, 30,

label_row_css = "text-align: center;")
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# Create Figure 4.3

love.plot(coffee_formula,

data = coffee_data,

weights = list(Replication = coffee_rep_pmodel,

Logit = coffee_logit_weight,

Boosting= coffee_boosted_weight),

var.order = "unadjusted", binary = "std", continuous = "std",

abs = TRUE, colors = c("#333333", "#2780e3", "darkblue","darkred"),

shapes = rep("circle filled", 4),

line = TRUE, thresholds = 0.1, s.d.denom = "treated", use.grid = F) +

labs(title = "Variable Balance Using Different Balance Methods",

x = "Absolute Standardised Mean Differences",

fill = "Method") +

scale_x_continuous(breaks = seq(0,0.6,length.out=7),

expand = expansion(c(0, 0.05))) +

custom_ggplot_theme

# Create Table 4.6

coffee_att_formula <- update.formula(as.formula(

paste("~", paste(attr(terms(coffee_formula), "term.labels"),

collapse = " + "))),

percapinc_day ~ certified * .)

coffee_logit_fit <- lm_weightit(coffee_att_formula,

data = coffee_data, weightit = coffee_logit_weight)
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coffee_boosted_fit <- lm_weightit(coffee_att_formula,

data = coffee_data,

weightit = coffee_boosted_weight)

coffee_logit_att <- avg_comparisons(coffee_logit_fit, variables = "certified")

coffee_boosted_att <- avg_comparisons(coffee_boosted_fit,

variables = "certified")

coffee_comparisons_tab <- rbind(replicated_result_tbl,

extract_comparison_results(coffee_logit_att),

extract_comparison_results(coffee_boosted_att))

rownames(coffee_comparisons_tab) <- c("Rep. Result (Logistic with PSM)",

"Logistic Regression and IPW",

"Generalized Boosting Machine and IPW")

knitr::kable(coffee_comparisons_tab, digits = 4)

save.image(file = "globals.RData")
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5 Conclusion and Summary

In conclusion, propensity score methods are useful causal inference tools when working with ob‑

servational data. While logistic regression is commonly used, machine learning approaches can

improve the calibration of propensity scores and lead to better covariate balance. Thus, a better

estimate of the treatment effect can be obtained. Particularly, gradient boostingmachines perform

well with strong theoretical properties in the context probability prediction.

The impact of fair trade certification for coffee producers in developing countries is an agricultural

economics problem within a causal inference lense. Replicating Jena et al. (2012) with machine

learning propensity scores results in a 10 fold increase in the estimate treatment effect of certifica‑

tion on per capita income which is a notable finding. The significant change in the covariate bal‑

ance under amachine learning propensity score is a testament to the value of machine learning for

propensity scores in this observational situation.

Although powerful, methods such as inverse propensity weighting assumes that the treatment ef‑

fect is constant across all individuals and subgroups. Moving forward, a critical area of research

at the intersection of machine learning and causal inference is the exploration of treatment effect

heterogeneity, which refers to the variation in treatment effects across different individuals or sub‑

groups. This concept is particularly relevant in fields like targeted medicine and policy, where un‑

derstanding how different groups respond to a treatment or policy can lead to more effective and

equitable outcomes.
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Existing methods for estimating heterogeneous treatment effects encompass various approaches,

including causal trees, causal forests, andmetalearners. Causal trees are an adaptation of decision

trees, specifically designed to estimate treatment effects by partitioning data into heterogeneous

subgroups that exhibit different responses to a treatment. Building on this, causal forests are an

implementation of a generalized random forest, improving the stability and estimation of heteroge‑

neous treatment effects. Metalearners, such as T‑learners and S‑learners, represent another pow‑

erful framework, wherein existing machine learning algorithms estimate treatment effects at the

individual level.

A particularly promising area of future research lies in enhancing the interpretability of these ma‑

chine learning algorithms,making themmore accessible for real‑world decision‑making. For exam‑

ple, causal rule ensembles combine thepredictive power ofmachine learningwith the transparency

of rule‑based models. This interpretability is crucial for applying these advanced methods in prac‑

tical settings, where understanding the rationale behind treatment effects can inform policy and

individual decisions.

86



References

Abadie, Alberto, and Guido W. Imbens. 2006. “Large sample properties of matching estimators for

average treatment effects.” Econometrica 74 (1): 235–67. https://doi.org/10.1111/j.1468‑0262.

2006.00655.x.

Allaire, JJ, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin Ushey,

Aron Atkins, et al. 2024. rmarkdown: Dynamic Documents for r. https://github.com/rstudio/

rmarkdown.

Arel‑Bundock, Vincent, Noah Greifer, and Andrew Heiss. Forthcoming. “How to Interpret Statistical

Models Using marginaleffects in R and Python.” Journal of Statistical Software, Forthcoming.

Austin, Peter. 2011. “An introduction to propensity score methods for reducing the effects of con‑

founding in observational studies.” Multivariate Behavioral Research 46 (3): 399–424. https:

//doi.org/10.1080/00273171.2011.568786.

Austin, Peter C. 2008. “A critical appraisal of propensity‑score matching in the medical literature

between 1996 and 2003.” Statistics in Medicine 27 (April): 2037–49. https://doi.org/10.1002/sim.

3150.

Bader‑El‑Den,Mohammed, ElemanTeitei, andToddPerry. 2019. “BiasedRandomForest forDealing

with the Class Imbalance Problem.” IEEE Transactions on Neural Networks and Learning Systems

30 (7): 2163–72. https://doi.org/10.1109/TNNLS.2018.2878400.

Barrett, Tyson, Matt Dowle, Arun Srinivasan, Jan Gorecki, Michael Chirico, and Toby Hocking. 2024.

data.table: Extension of “data.frame”. https://CRAN.R‑project.org/package=data.table.

87

https://doi.org/10.1111/j.1468-0262.2006.00655.x
https://doi.org/10.1111/j.1468-0262.2006.00655.x
https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1002/sim.3150
https://doi.org/10.1002/sim.3150
https://doi.org/10.1109/TNNLS.2018.2878400
https://CRAN.R-project.org/package=data.table


Breiman, Leo. 1996. “Bagging predictors.” Machine Learning 24: 123–40. https://doi.org/10.3390/

risks8030083.

———. 2001. “Random Forests.” Machine Learning 45: 5–32. https://doi.org/https://doi.org/10.

1023/A:1010933404324.

Breiman, Leo, Jerome H Friedman, Richard A Olshen, and Charles Stone. 1984. Classification and

Regression Trees. Chapman; Hall/CRC. https://doi.org/10.1201/9781315139470.

Brookhart, M. Alan, Sebastian Schneeweiss, Kenneth J. Rothman, Robert J. Glynn, Jerry Avorn, and

Til Stürmer. 2006. “Variable selection for propensity score models.” American Journal of Epi‑

demiology 163 (12): 1149–56. https://doi.org/10.1093/aje/kwj149.

Cannas, Massimo, and Bruno Arpino. 2019. “A comparison of machine learning algorithms and co‑

variate balancemeasures for propensity scorematching and weighting.” Biometrical Journal 61

(4): 1049–72. https://doi.org/10.1002/bimj.201800132.

Cunningham, Scott. 2021. “Matching and Subclassification.” In Causal Inference: The Mixtape, 175–

240. Yale University Press. https://doi.org/10.2307/j.ctv1c29t27.8.

Dehejia, Rajeev H., and Sadek Wahba. 1999. “Causal Effects in Nonexperimental Studies: Reeval‑

uating the Evaluation of Training Programs.” Journal of the American Statistical Association 94

(448): 1053–62. https://doi.org/10.1080/01621459.1999.10473858.

Ferri‑García, Ramón, and María Del Mar Rueda. 2020. “Propensity score adjustment using machine

learning classification algorithms to control selection bias in online surveys.” PLoS ONE 15 (4):

1–19. https://doi.org/10.1371/journal.pone.0231500.

Friedman, Jerome H. 2001. “Greedy Function Approximation: A Gradient Boosting Machine.” The

Annals of Statistics 29 (5): 1189–1232. https://www.jstor.org/stable/2699986.

Goller, Daniel, Michael Lechner, Andreas Moczall, and Joachim Wolff. 2020. “Does the estimation

of the propensity score by machine learning improve matching estimation? The case of Ger‑

many’s programmes for long term unemployed.” Labour Economics 65 (March). https://doi.org/

10.1016/j.labeco.2020.101855.

88

https://doi.org/10.3390/risks8030083
https://doi.org/10.3390/risks8030083
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.1093/aje/kwj149
https://doi.org/10.1002/bimj.201800132
https://doi.org/10.2307/j.ctv1c29t27.8
https://doi.org/10.1080/01621459.1999.10473858
https://doi.org/10.1371/journal.pone.0231500
https://www.jstor.org/stable/2699986
https://doi.org/10.1016/j.labeco.2020.101855
https://doi.org/10.1016/j.labeco.2020.101855


Greifer, Noah. 2024a. cobalt: Covariate Balance Tables and Plots. https://CRAN.R‑project.org/

package=cobalt.

———. 2024b. WeightIt: Weighting for Covariate Balance in Observational Studies. https://CRAN.R‑

project.org/package=WeightIt.

Heinrich, Carolyn, Alessandro Maffioli, and Gonzalo Vázquez. 2010. “A Primer for Applying

Propensity‑Score Matching.” August. http://dx.doi.org/10.18235/0008567.

Henke, Thorsten. 2016. “MatchItSE.”

Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2011. “MatchIt: Nonparametric Pre‑

processing for Parametric Causal Inference.” Journal of Statistical Software 42 (8): 1–28. https:

//doi.org/10.18637/jss.v042.i08.

Huntington‑Klein, Nick, and Malcolm Barrett. 2021. causaldata: Example Data Sets for Causal Infer‑

ence Textbooks. https://CRAN.R‑project.org/package=causaldata.

Jena, Pradyot Ranjan, Bezawit Beyene Chichaibelu, Till Stellmacher, and Ulrike Grote. 2012. “The

impactof coffeecertificationon small‑scaleproducers’ livelihoods: A case study fromtheJimma

Zone, Ethiopia.” Agricultural Economics (United Kingdom) 43 (4): 429–40. https://doi.org/10.

1111/j.1574‑0862.2012.00594.x.

King, Gary, and Richard Nielsen. 2019. “Why Propensity Scores Should Not Be Used for Matching.”

Political Analysis 27 (4): 435–54. https://doi.org/10.1017/pan.2019.11.

LaLonde, Robert J. 1986. “Evaluating the Econometric Evaluations of Training Programswith Exper‑

imental Data Author.” The American Economic Review 76 (4): 604–20. http://arks.princeton.edu/

ark:/88435/dsp010p096689n.

Lampach, Nicolas, and Ulrich B. Morawetz. 2016. “Credibility of propensity score matching esti‑

mates. An example from Fair Trade certification of coffee producers.” Applied Economics 48 (44):

4227–37. https://doi.org/10.1080/00036846.2016.1153795.

Lee, Brian K., Justin Lessler, and Elizabeth A. Stuart. 2010. “Improving propensity score weighting

using machine learning.” Statistics in Medicine 29: 337–46. https://doi.org/10.1002/sim.3782.

89

https://CRAN.R-project.org/package=cobalt
https://CRAN.R-project.org/package=cobalt
https://CRAN.R-project.org/package=WeightIt
https://CRAN.R-project.org/package=WeightIt
http://dx.doi.org/10.18235/0008567
https://doi.org/10.18637/jss.v042.i08
https://doi.org/10.18637/jss.v042.i08
https://CRAN.R-project.org/package=causaldata
https://doi.org/10.1111/j.1574-0862.2012.00594.x
https://doi.org/10.1111/j.1574-0862.2012.00594.x
https://doi.org/10.1017/pan.2019.11
http://arks.princeton.edu/ark:/88435/dsp010p096689n
http://arks.princeton.edu/ark:/88435/dsp010p096689n
https://doi.org/10.1080/00036846.2016.1153795
https://doi.org/10.1002/sim.3782


Liaw, Andy, and MatthewWiener. 2002. “Classification and Regression by randomForest.” R News 2

(3): 18–22. https://CRAN.R‑project.org/doc/Rnews/.

McCaffrey, Daniel F., Greg Ridgeway, and Andrew R. Morral. 2004. “Propensity score estimation

with boosted regression for evaluating causal effects in observational studies.” Psychological

Methods 9 (4): 403–25. https://doi.org/10.1037/1082‑989X.9.4.403.

Naimi, Ashley I., Stephen R. Cole, and Edward H. Kennedy. 2017. “An introduction to g methods.”

International Journal of Epidemiology 46 (2): 756–62. https://doi.org/10.1093/ije/dyw323.

Olson, Matthew A., and Abraham J. Wyner. 2018. “Making Sense of Random Forest Probabilities: a

Kernel Perspective,” 1–35. http://arxiv.org/abs/1812.05792.

Pedersen, Thomas Lin. 2024. patchwork: The Composer of Plots. https://CRAN.R‑project.org/

package=patchwork.

R Core Team. 2024. R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. https://www.R‑project.org/.

Ridgeway, Greg, and GBM Developers. 2024. gbm: Generalized Boosted Regression Models. https:

//CRAN.R‑project.org/package=gbm.

Ridgeway, Greg, DanMccaffrey, AndrewMorral, MatthewCefalu, LaneBurgette, andBethAnnGriffin.

2024. “Toolkit for Weighting and Analysis of Nonequivalent Groups: A Tutorial for the R TWANG

Package.” https://doi.org/10.7249/tl136.1.

Rosenbaum, Paul R., and Donald B. Rubin. 1983. “The central role of the propensity score in

observational studies for causal effects.” Biometrika 70 (1): 41–55. https://doi.org/10.1017/

CBO9780511810725.016.

Rubin, Donald B. 1974. “Estimating Causal Effects of Treatments in Experimental andObservational

Studies.” Journal of Educational Psychology 66 (5): 688–701. https://doi.org/10.1002/j.2333‑

8504.1972.tb00631.x.

Schuster, Tibor, Wilfrid Kouokam Lowe, and Robert W. Platt. 2016. “Propensity score model over‑

fitting led to inflated variance of estimated odds ratios.” Journal of Clinical Epidemiology 80:

90

https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1037/1082-989X.9.4.403
https://doi.org/10.1093/ije/dyw323
http://arxiv.org/abs/1812.05792
https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=patchwork
https://www.R-project.org/
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://doi.org/10.7249/tl136.1
https://doi.org/10.1017/CBO9780511810725.016
https://doi.org/10.1017/CBO9780511810725.016
https://doi.org/10.1002/j.2333-8504.1972.tb00631.x
https://doi.org/10.1002/j.2333-8504.1972.tb00631.x


97–106. https://doi.org/10.1016/j.jclinepi.2016.05.017.

Setoguchi, Soko, Sebastian Schneeweiss, Alan M. Brookhart, Robert J. Glynn, and Francis E. Cook.

2008. “Evaluating uses of data mining techniques in propensity score estimation: a simulation

study.” Pharmacoepidemiology and Drug Safety 17 (March): 546–55. https://doi.org/10.1002/

pds.

Smith, Jeffrey A., and Petra E. Todd. 2005. Does matching overcome LaLonde’s critique of nonexperi‑

mental estimators? Vol. 125. 1‑2 SPEC. ISS. https://doi.org/10.1016/j.jeconom.2004.04.011.

Splawa‑Neyman, Jerzy. 1923. “On the application of probability theory to agricultural experiments.

Essay on principles. Section 9.” PhD thesis. https://doi.org/10.1214/ss/1177012031.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal

Statistical Society 58 (1): 267–88. https://www.jstor.org/stable/2346178.

Tu, Chunhao. 2019. “Comparisonof variousmachine learningalgorithms for estimatinggeneralized

propensity score.” Journal of Statistical Computation and Simulation 89 (4): 708–19. https://doi.

org/10.1080/00949655.2019.1571059.

Ushey, Kevin, and Hadley Wickham. 2024. renv: Project Environments. https://CRAN.R‑project.org/

package=renv.

Wickham,Hadley,MaraAverick, Jennifer Bryan,WinstonChang, LucyD’AgostinoMcGowan, Romain

François, Garrett Grolemund, et al. 2019. “Welcome to the tidyverse.” Journal of Open Source

Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.

Xie, Yihui. 2014. “knitr: A Comprehensive Tool for Reproducible Research in R.” In Implementing

Reproducible Computational Research, edited by Victoria Stodden, Friedrich Leisch, and Roger

D. Peng. Chapman; Hall/CRC.

———. 2015. DynamicDocumentswithRandKnitr. 2nded. BocaRaton, Florida: Chapman; Hall/CRC.

https://yihui.org/knitr/.

———. 2024. knitr: A General‑Purpose Package for Dynamic Report Generation in r. https://yihui.org/

knitr/.

91

https://doi.org/10.1016/j.jclinepi.2016.05.017
https://doi.org/10.1002/pds
https://doi.org/10.1002/pds
https://doi.org/10.1016/j.jeconom.2004.04.011
https://doi.org/10.1214/ss/1177012031
https://www.jstor.org/stable/2346178
https://doi.org/10.1080/00949655.2019.1571059
https://doi.org/10.1080/00949655.2019.1571059
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=renv
https://doi.org/10.21105/joss.01686
https://yihui.org/knitr/
https://yihui.org/knitr/
https://yihui.org/knitr/


Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca Raton,

Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. Boca Raton,

Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown‑cookbook.

Zhu, Hao. 2024. kableExtra: Construct Complex Table with “kable” and Pipe Syntax. https://CRAN.R‑

project.org/package=kableExtra.

R Version Control

Please note that future updates to these packages may impact replication of results.

Package Version Citation

base 4.4.1 R Core Team (2024)

causaldata 0.1.3 Huntington‑Klein and Barrett (2021)

cobalt 4.5.5 Greifer (2024a)

data.table 1.15.4 Barrett et al. (2024)

gbm 2.2.2 Ridgeway and Developers (2024)

kableExtra 1.4.0 Zhu (2024)

knitr 1.48.1 Xie (2014); Xie (2015); Xie (2024)

marginaleffects 0.21.0 Arel‑Bundock, Greifer, and Heiss (Forthcoming)

MatchIt 4.5.5 Ho et al. (2011)

MatchItSE 1.0 Henke (2016)

patchwork 1.2.0 Pedersen (2024)

randomForest 4.7.1.1 Liaw andWiener (2002)

renv 1.0.7 Ushey and Wickham (2024)

92

https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
https://CRAN.R-project.org/package=kableExtra
https://CRAN.R-project.org/package=kableExtra


Package Version Citation

rmarkdown 2.27 Xie, Allaire, and Grolemund (2018); Xie, Dervieux, and

Riederer (2020); Allaire et al. (2024)
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A Datasets

A.1 National SupportedWork Data

The National Supported Work (NSW) Demonstration Job Training Program dataset originates from

a large‑scale social experiment conducted in the 1970s in the United States aimed at evaluating

the impact of job training on employment and earnings among disadvantaged groups, including

ex‑addicts, ex‑offenders, youth dropouts, and long‑term unemployed women. The data contains a

wide range of covariates including as age, education, pre‑treatment earnings, marital status, and

race.

The study is a randomized controlled trial (RCT) design which is rare for jobs and employment data.

Participants were randomly assigned to either a treatment group, which received job training, or a

control group,which did not. “Job training”mayhave includedbut is not limited to temporarywork

programmes, highly supervised work, and peer support programs. This randomisation is notable

as it as it simplifies the calculation of a treatment effect.

Initially LaLonde (1986) used the NSWdataset to compare experimental and non‑experimental esti‑

mators of the treatment effect. His findings highlighted significant discrepancies between the two,

underscoring the importance of randomization in estimating causal effects. This study has been
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widely cited and forms the basis for many discussions on the validity of non‑experimental meth‑

ods. Following this, Dehejia and Wahba (1999), revisited LaLonde’s analysis and compared many

different contemporary methods with varying results.

For these reason it is commonly used in the literature as a toy dataset. It serves as a practical exam‑

ple for students learning about causal inference, allowing them to understand and apply different

econometric methods.

library('causaldata')

data("nsw_mixtape", package = "causaldata")

nsw_data <- as.data.frame(nsw_mixtape)

nsw_data$data_id <- seq(1,length(nsw_data$data_id))

nsw_data$degree <- abs(nsw_data$nodegree-1)

nsw_data$nodegree <- NULL

A.2 Coffee Data from Jena et al. (2012)

The data used in the study by Jena et al. (2012) focuses on small coffee farmers in Ethiopia. It in‑

cludes a comprehensive survey of coffee‑producing households, capturing various socioeconomic

and agricultural variables. Key data points include household income, coffee production levels,

prices received for coffee (both certified and non‑certified), costs associated with certification, and

access tomarkets. Additionally, the dataset encompasses demographic information such as house‑

hold size, education levels, and access to resources like credit and extension services. This rich
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dataset allows for a detailed analysis of the impact of coffee certification on the livelihoods of these

farmers, providing insights into both the benefits and challenges associated with certification pro‑

grams.

The data is best accessed from Lampach andMorawetz (2016) where the data is available in the sup‑

plimentary information: https://www.tandfonline.com/doi/full/10.1080/00036846.2016.1153795.

This data is also included on this project’s GitHub under datasets/.

library(haven)

coffee_data <- read_dta("datasets/Jena_etAl_LampachMorawetz.dta")

coffee_data <- zap_formats(coffee_data)

coffee_data <- coffee_data[-c(56,84,156 ),]
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B Theming and Functions

The following ggplot2 theme is used to stylise plots.

library(ggplot2)

custom_ggplot_theme <- theme_classic(base_size = 11,

base_family = "Source Sans Pro") +

theme(

text = element_text(color = "#333333"),

plot.background = element_blank(),

panel.background = element_blank(),

axis.text = element_text(color = "#333333"),

axis.title = element_text(color = "#333333", face = "bold"),

legend.text = element_text(color = "#333333"),

legend.title = element_text(color = "#333333", face = "bold",),

plot.title = element_text(size = 14, face = "bold", color = "#333333"),

plot.subtitle = element_text(size = 12, face = "italic",

color = "#333333"),

strip.text = element_text(face = "bold",color = "#333333"),

legend.position="bottom")
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theme_set(custom_ggplot_theme)

extract_comparison_results <- function(results) {

extracted_results <- data.frame(

Estimate = results$estimate,

SE = results$std.error,

P.Value = results$p.value,

Lower.CI = results$conf.low,

Upper.CI = results$conf.high

)

return(extracted_results)

}
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